dbo:abstract
|
- A Boole-algebra (George Boole-ról kapta a nevét) a programvezérelt digitális számítógép kidolgozásának matematikai alapja. A Boole-algebra informatikai értelmeben olyan mennyiségek közötti összefüggések törvényszerűségeit vizsgálja, amelyek csak két értéket vehetnek fel. A kijelentéslogika pl., amely a logika algebrájának egy interpretációjaként fogható fel, olyan kijelentésekkel dolgozik, amelyek vagy "igazak", vagy "hamisak", és keressük az olyan kijelentések valóságtartalmát, amelyek helyes vagy hamis elemi kijelentésekből tevődnek össze. A Boole-algebra másik interpretációja a kapcsolási algebra. Alapjául olyan kapcsolási elemek szolgálnak, amelyek csupán két, egymástól különböző állapotot vehetnek fel, például egy áramkörben vagy folyik áram, vagy nem; mágneses állapot fennáll vagy sem stb. A kapcsolási algebra azt vizsgálja, hogy az ilyen kapcsolási elemekből összeállított háló kimenetén a lehetséges két állapot melyike valósul meg, ha az elemek az egyik vagy másik lehetséges állapotban vannak. Ezért a Boole-algebra az elektronikus digitális számítógép konstruálásának nélkülözhetetlen elméleti alapja. A bináris, logikai vagy Boole-féle változóknak nevezett mennyiségek kétértékűségét két jel bevezetésével fejezik ki. Ezek: "0" és "1" vagy "O" és "L". A logikai változók közötti összefüggéseket matematikailag a függvény fogalmával lehet leírni. Nevezhetjük ezeket logikai függvényeknek, valóságfüggvényeknek vagy kapcsolási függvényeknek. (hu)
- A Boole-algebra (George Boole-ról kapta a nevét) a programvezérelt digitális számítógép kidolgozásának matematikai alapja. A Boole-algebra informatikai értelmeben olyan mennyiségek közötti összefüggések törvényszerűségeit vizsgálja, amelyek csak két értéket vehetnek fel. A kijelentéslogika pl., amely a logika algebrájának egy interpretációjaként fogható fel, olyan kijelentésekkel dolgozik, amelyek vagy "igazak", vagy "hamisak", és keressük az olyan kijelentések valóságtartalmát, amelyek helyes vagy hamis elemi kijelentésekből tevődnek össze. A Boole-algebra másik interpretációja a kapcsolási algebra. Alapjául olyan kapcsolási elemek szolgálnak, amelyek csupán két, egymástól különböző állapotot vehetnek fel, például egy áramkörben vagy folyik áram, vagy nem; mágneses állapot fennáll vagy sem stb. A kapcsolási algebra azt vizsgálja, hogy az ilyen kapcsolási elemekből összeállított háló kimenetén a lehetséges két állapot melyike valósul meg, ha az elemek az egyik vagy másik lehetséges állapotban vannak. Ezért a Boole-algebra az elektronikus digitális számítógép konstruálásának nélkülözhetetlen elméleti alapja. A bináris, logikai vagy Boole-féle változóknak nevezett mennyiségek kétértékűségét két jel bevezetésével fejezik ki. Ezek: "0" és "1" vagy "O" és "L". A logikai változók közötti összefüggéseket matematikailag a függvény fogalmával lehet leírni. Nevezhetjük ezeket logikai függvényeknek, valóságfüggvényeknek vagy kapcsolási függvényeknek. (hu)
|