This HTML5 document contains 11 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://hu.dbpedia.org/resource/Sablon:
n9https://web.archive.org/web/20200504013846/https:/www.itl.nist.gov/div898/handbook/eda/section3/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n4http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Bartlett-próba
rdfs:label
Bartlett-próba
dct:subject
n4:Statisztika
dbo:wikiPageID
1665351
dbo:wikiPageRevisionID
23135165
dbo:wikiPageExternalLink
n9:eda357.htm
prop-hu:wikiPageUsesTemplate
n6:Jegyzetek
dbo:abstract
A statisztikában a Bartlett-próba (lásd Snedecor és Cochran, 1989) segítségével eldönthetjük, hogy a minták egyenlő varianciájú populációkból származnak-e. Ha a populációk varianciája azonos, azt homoszkedaszticitásnak vagy homogenitásnak nevezzük. Néhány statisztikai próba, például a varianciaanalízis, azt feltételezi, hogy a vizsgált populációk varianciája azonos. A Bartlett-próba segítségével ez a feltételezés igazolható. A Bartlett-próba során null- és alternatív hipotézist állítunk fel. E célból számos vizsgálati eljárást dolgoztak ki. Az átlagos négyzetes hiba (Mean Square Error = MSE) tesztelési módszere, illetve becslőfüggvények miatt érdemes a Bartlett-próbát használni. Ez a vizsgálati módszer azokat a statisztikai eseteket veszi alapul, amelyeknek mintavételi eloszlása megközelítőleg Khí-négyzet eloszlás k-1 szabadsági fokkal, ahol k az n1, n2... nk méretű véletlenszerű minták különböző varianciájú független normál populációkból származnak. A Bartlett-próba érzékeny a normális eloszlástól való eltérésre. Vagyis ha a minták nem normális eloszlású populációkból származnak, akkor a Bartlett-próba csak a nem-normál eloszlás tesztelésére használható. A Levene-próba és a alternatívák lehetnek a Bartlett-próba helyett, mivel kevésbé érzékenyek a normalitástól való eltérésre. A próba kapta a nevét.
prov:wasDerivedFrom
wikipedia-hu:Bartlett-próba?oldid=23135165&ns=0
dbo:wikiPageLength
3929
foaf:isPrimaryTopicOf
wikipedia-hu:Bartlett-próba
Subject Item
wikipedia-hu:Bartlett-próba
foaf:primaryTopic
dbpedia-hu:Bartlett-próba