This HTML5 document contains 17 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n13http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Bartlett-tétel
rdfs:label
Bartlett-tétel
owl:sameAs
freebase:m.0py2gzh
dct:subject
n13:Sorbanállási_elmélet
dbo:wikiPageID
998333
dbo:wikiPageRevisionID
23452154
prop-hu:wikiPageUsesTemplate
n11:Források n11:CitLib
prop-hu:cím
Poisson Processes
prop-hu:isbn
198536933
prop-hu:kiadó
Oxford University Press
prop-hu:szerző
Kingman, John
prop-hu:év
1993
dbo:abstract
A sorbanállás-elméletben a Bartlett-tétel az ügyfelek számának az eloszlását adja meg egy rendszer adott részében, egy rögzített időben. Tegyük fel, hogy az ügyfelek a Poisson-folyamat A(t) szerint érkeznek és egymástól függetlenül mozognak. A vizsgált rendszer része E, és annak p(s,t) a valószínűsége, hogy az s időben érkező ügyfél t időben van az E –ben. Ekkor az E rendszerben, t időben az ügyfelek számának Poisson-eloszlása van a következő középértékkel:
prov:wasDerivedFrom
wikipedia-hu:Bartlett-tétel?oldid=23452154&ns=0
dbo:wikiPageLength
1392
foaf:isPrimaryTopicOf
wikipedia-hu:Bartlett-tétel
Subject Item
wikipedia-hu:Bartlett-tétel
foaf:primaryTopic
dbpedia-hu:Bartlett-tétel