This HTML5 document contains 27 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
n18http://fftw.org/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
n19http://apps.nrbook.com/empanel/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n8http://eprints.whiterose.ac.uk/708/1/
n12https://www.scribd.com/doc/52879771/
freebasehttp://rdf.freebase.com/ns/
n9http://infoscience.epfl.ch/record/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
n14https://archive.org/details/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n17http://search.ieice.org/bin/
n6http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Diszkrét_koszinusz-transzformáció
rdfs:label
Diszkrét koszinusz-transzformáció
owl:sameAs
freebase:m.0g9z9
dct:subject
n6:Digitális_jelfeldolgozás n6:Fourier-analízis n6:Algoritmusok
dbo:wikiPageID
51802
dbo:wikiPageRevisionID
23425073
dbo:wikiPageExternalLink
n8:boussaktas2.pdf n9:59946 n12:DCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform n14:discretetimesign00alan n17:summary.php%3Fid=e71-e_11_1095 n18:fftw-paper-ieee.pdf%7C n19:index.html%23pg=624
prop-hu:wikiPageUsesTemplate
n4:Telekommunikáció n4:Portál n4:Cite_journal n4:Citation n4:Nincs_forrás
dbo:abstract
A diszkrét koszinusz-transzformáció (angol nyelvű rövidítése: DCT) egy Fourier-transzformáció, hasonló a , de nem komplex, hanem valós számokon dolgozik. A tömörítés során a lényegtelen információk elhagyására törekszünk. A eljárást alkalmazva a mintavételi frekvencia és/vagy a kvantálási lépcsők számának csökkentésével jóval kisebb adathalmazt kapunk, miközben a képminőség csak az elfogadható mértékben romlott. Nem használtuk ki azonban az emberi látás néhány fontos tulajdonságát. Ha az adathalmazunkra alkalmazzuk a DCT-t, a kapott új adathalmaz nem lesz nagyobb, mint az eredeti, de ez most a kép spektrális tulajdonságaira lesz jellemző. Az emberi szem azonban a nagyfrekvenciás összetevőkre jóval kevésbé érzékeny, mint a DC-hez közeliekre. Elhagyva a nagyfrekvenciás összetevők kb. 50%-át, az inverz transzformáció után az eredeti kódolt információnak legfeljebb 5%-a veszik el. A JPEG kódolás során a képet 8×8 pixelből álló blokkokra osztjuk, és ezt a 64 képpontot együtt transzformáljuk. Ezt eredetileg az indokolta, hogy az eljárás kifejlesztésének idején az integrált áramkörös technológia ennyit tett lehetővé. A 8x8-as technika jól bevált, ezért azóta sem módosították. Az MPEG technika a kódolás és a mozgásbecslés során szintén 8x8-as blokkokat használ, de ott a blokkméret növelése igen jelentős számítástechnikai többletigénnyel járna. Ha egy N mintából álló sorozatot szimmetrikussá teszünk úgy, hogy a mintákat csökkenő index szerint megismételjük, akkor egy páros függvényt kapunk. A függvény Fourier transzformáltjának (spektrumának) N db harmonikus összetevője lesz (0 - N-1). Valamennyi összetevő koszinuszos és valós. Egyszerűsítve ez a DCT. Az N mintából álló sorozat diszkrét koszinusz-transzformáltja: Az N db mintát együtt transzformáltuk. Ha az N = 8, akkor 8-féle alapfüggvényt (harmonikus összetevőt) kapunk, amiből a k = 0-hoz tartozó összetevő a DC, és értéke: Ne feledkezzünk meg azonban arról, hogy a képet három kétváltozós (x,y) függvény írja le, ezért kétdimenziós DCT-re van szükségünk. Ezt elvégezhetjük úgy is, hogy két egydimenziós DCT-t egymás után kapcsolunk. A kétdimenziós DCT formula: x(k,l) a bemeneti minta, am, an ugyanúgy alakul, mint az egydimenziós DCT-nél. 8x8 képpontból álló blokkok együttes transzformálásakor 64-féle alapfüggvényt kapunk, vagyis megkaptuk a DC és a 63-féle koszinuszos összetevő együtthatóit. (A transzformáció szempontjából teljesen mindegy, hogy egy képpontot eredetileg hány biten kódoltunk.) A 64 minta helyett most van 64 másik számunk. Látszólag feleslegesen dolgoztunk. Rendezzük 8x8-as mátrixba az együtthatókat úgy, hogy a mátrix (0,0)-ás eleméhez tartozzon a DC, a (7,7) pozíciójú eleméhez pedig a legnagyobb frekvenciájú összetevő. Az együtthatókat kvantáljuk. A még elfogadható minőségromlás mértéke határozza meg, hogy hány kvantálási lépcsőt alkalmazunk. A kvantálás optimalizálható, ha a kvantálási mátrixot az adott képhez illesztjük (adaptáljuk), de akkor azt is át kell vinni. A szem érzékenysége a frekvencia növelésével rohamosan csökken, a (7,7)-es elem esetén már csak kb. 256-od része a DC összetevőnek. Találhatunk tehát egy olyan súlyozó mátrixot, amellyel megszorozva az együtthatómátrixot, a nagyfrekvenciás együtthatók nagy része nulla, vagy nullához közeli értékű lesz. Tekintsünk nullának minden olyan értéket, amely egy adott minimum alá esik. Ha végigjárjuk a mátrixot a DC-től kiindulva cikk-cakk alakban úgy, hogy fokozatosan távolodjunk a DC összetevőtől, igen nagy a valószínűsége, hogy nullák sorozatával fogunk találkozni. Ez szinte megköveteli a futamhossz-kódolás alkalmazását. Az együtthatókat soros számfolyammá kell alakítani, de a nagyfrekvenciásak nem lényegesek. Ha egyszerűen elhagyjuk őket, az adaptációs képesség nulla. Súlyozás után a minimum alattiakat eldobhatjuk, de akkor meg kell adni a következő értékes együttható címét. A legjobb megoldás a cikk-cakk konverzió és az azt követő futamhossz-kódolás. Az alkalmazott futamhossz-kódolás némiképp eltér a korábban megismerttől. Az értékes együttható kódja után mindig a követő nullák száma (futási hossza) áll: eredeti számsorozat: 2,1,4,3,0,0,0,1,0,0,0,0,0,6,8,1,0,0,0, … RLE után: (2,0),(1,0),(4,0),(3,3),(1,5),(6,0),(8,0,),(1,3), … A számpárokra még alkalmazhatunk változó szóhosszúságú kódolást is, akár bemenő blokkonként változó kódtáblával. A JPEG kódolás során kétféle eljárást használhatunk. A nem keresztbeszövött kódolás során az egyes komponenseket külön-külön kódoljuk, a keresztbeszövött esetén pedig mindegyikből egyszerre annyit, amennyi a felbontásukból adódik.
prov:wasDerivedFrom
wikipedia-hu:Diszkrét_koszinusz-transzformáció?oldid=23425073&ns=0
dbo:wikiPageLength
11753
foaf:isPrimaryTopicOf
wikipedia-hu:Diszkrét_koszinusz-transzformáció
Subject Item
dbpedia-hu:DCT
dbo:wikiPageRedirects
dbpedia-hu:Diszkrét_koszinusz-transzformáció
Subject Item
dbpedia-hu:Dct
dbo:wikiPageRedirects
dbpedia-hu:Diszkrét_koszinusz-transzformáció
Subject Item
dbpedia-hu:Diszkrét_koszinusz_transzformáció
dbo:wikiPageRedirects
dbpedia-hu:Diszkrét_koszinusz-transzformáció
Subject Item
wikipedia-hu:Diszkrét_koszinusz-transzformáció
foaf:primaryTopic
dbpedia-hu:Diszkrét_koszinusz-transzformáció