This HTML5 document contains 11 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n6http://hu.dbpedia.org/resource/Sablon:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://hu.dbpedia.org/resource/Kategória:
n4http://perso.ens-lyon.fr/damien.pous/upto/

Statements

Subject Item
dbpedia-hu:Erejéig
rdfs:label
Erejéig
dct:subject
n12:Matematikai_terminológia
dbo:wikiPageID
1376907
dbo:wikiPageRevisionID
17866953
dbo:wikiPageExternalLink
n4:
prop-hu:wikiPageUsesTemplate
n6:Szám
dbo:abstract
A matematikában a ... erejéig kifejezés általában egy halmaz (legyen mondjuk H) elemeiről való diszkusszió során merül fel, annak kapcsán, hogy a halmaz mely részhalmazai tekinthetők egymással ekvivalensnek. Az állítás, hogy „a H halmaz a és b elemei ekvivalensek X erejéig” azt jelenti, hogy a és b ekvivalensek, ha az X feltételtől (például egy forgatástól vagy egy permutálástól) eltekintünk. Más szavakkal, a és b egymásba transzformálhatók, egy X transzformáció (forgatás, permutáció stb.) alkalmazásával. A teljes H halmazt tekintve, ha az X transzformációtól eltekintünk, az elemek elrendezhetők olyan részhalmazokba, melyben az elemek ekvivalensek („ekvivalens X erejéig”). Az ilyen részhalmazokat ekvivalenciaosztályoknak nevezik. Ha X valamely tulajdonság vagy folyamat, akkor az „X erejéig” jelentése: „eltekintve az X-ben való esetleges eltérésektől”. Például az az állítás, hogy „egy egész szám prímtényezős felbontása egyéni, átrendezés erejéig” azt jelenti, hogy a prímtényezős felbontás egyedi, ha eltekintünk a prímtényezők sorrendjétől. Vagy kijelenthető, hogy egy határozatlan integrál megoldása konstans hozzáadásának erejéig, ami azt jelenti, hogy nem a hozzáadott konstans a lényeg, hanem az megoldás, a konstanst háttértényezőnek, másodlagos jelentőségűnek lehet tekinteni. További példákat, mint az „izomorfizmus erejéig”, „permutáció erejéig” és „forgatás erejéig” lentebb tárgyalunk. Informális környezetben matematikusok hasonló jelentéstartalom kifejezésére gyakran csak annyit mondanak, hogy „modulo” (vagy egyszerűen csak „mod”), például „modulo izomorfizmus”.
prov:wasDerivedFrom
wikipedia-hu:Erejéig?oldid=17866953&ns=0
dbo:wikiPageLength
4888
foaf:isPrimaryTopicOf
wikipedia-hu:Erejéig
Subject Item
wikipedia-hu:Erejéig
foaf:primaryTopic
dbpedia-hu:Erejéig