This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://hu.dbpedia.org/resource/Sablon:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://hu.dbpedia.org/resource/Kategória:
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbpedia-hu:Fermat-prímek
rdfs:label
Fermat-prímek
dct:subject
n12:Számelmélet
dbo:wikiPageID
21213
dbo:wikiPageRevisionID
23563630
prop-hu:wikiPageUsesTemplate
n5:Jegyzetek n5:Prímszámok_osztályozása n5:Cite_book
dbo:wikiPageInterLanguageLink
dbr:Fermat_number
prop-hu:first
Gyula
prop-hu:isbn
9639323659
prop-hu:last
Staar
prop-hu:location
Budapest
prop-hu:publisher
Vince
prop-hu:ref
harv
prop-hu:title
Matematikusok és teremtett világuk. Beszélgetések
prop-hu:year
2002
dbo:abstract
Olyan Fermat-számok, amelyek prímek; tehát Fn=22n+1 alakú prímszámok. Összesen öt ismeretes: F0=3, F1=5, F2=17, F3=257, F4=65537.Fermat felállította azt a sejtést, hogy minden ilyen alakú szám prímszám. Euler Goldbach leveléből értesülve erről, 1732-ben, 25 éves korában, első számelméleti cikkében (amit a következő 51 évben számos követett) megcáfolta ezt, kimutatva, hogy 641 osztja F5-öt. További nevezetességet nyertek e prímszámok azáltal, hogy 1796. március 30-án Gauss bebizonyította, hogy a szabályos 17-szög és általában minden m-szög, ahol m Fermat-prím, körzővel és vonalzóval megszerkeszthető. A 19 éves Gauss ekkor kezdte naplóját e szavakkal: „Principia quibus innitur sectio circuli, ac divisibilitas eiusdem geometrica in septemdecim partes…” Disquitiones Arithmeticae című könyvében azt is állította, hogy tétele megfordítását is igazolta, tehát hogy a szabályos n-szög pontosan akkor szerkeszthető, ha n páratlan prímtényezői valamennyien Fermat-prímek és mind csak az első hatványon szerepel. Annak bizonyítását azonban sosem publikálta, jegyzeteiben sem találták meg, ezért valószínűleg ilyennel nem rendelkezett. (A modern algebra eszközeivel ez könnyen igazolható. Ha a szabályos n-szög szerkeszthető, akkor az n-edik primitív egységgyök benne van a racionális számtest egy 2-hatvány fokú bővítésében, tehát maga is 2-hatvány fokú, márpedig foka az n-edik körosztási polinom foka, ami φ(n). Az Euler-féle φ-függvény tulajdonságaiból levezethető, hogy n csak az említett alakú lehet.) Bizonyos heurisztikus érvelések alapján általánosan elfogadott az a vélemény, hogy nincs több Fermat-prím, de legalábbis csak véges sokan vannak. Bár a Fermat-prímek véges számának sejtése valószínűleg igaz, de egyelőre nem ismeretes rá bizonyítás, és kétséges az is, hogy lesz-e valaha, létezik-e egyáltalán formális igazolása.
prov:wasDerivedFrom
wikipedia-hu:Fermat-prímek?oldid=23563630&ns=0
dbo:wikiPageLength
2499
foaf:isPrimaryTopicOf
wikipedia-hu:Fermat-prímek
Subject Item
dbpedia-hu:Fermat-prím
dbo:wikiPageRedirects
dbpedia-hu:Fermat-prímek
Subject Item
wikipedia-hu:Fermat-prímek
foaf:primaryTopic
dbpedia-hu:Fermat-prímek