This HTML5 document contains 13 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Nyílt_halmaz
rdfs:label
Nyílt halmaz
owl:sameAs
freebase:m.09syn
dct:subject
n12:Topológia n12:Geometria
dbo:wikiPageID
1010605
dbo:wikiPageRevisionID
23244477
prop-hu:wikiPageUsesTemplate
n5:Jegyzetek n5:ISBN
dbo:abstract
A topológiában egy halmaz akkor nyílt, ha nem tartalmazza egy határpontját sem, vagyis megegyezik a belső pontjainak halmazával. Metrikus terekben a nyílt halmazok pontosan azok, amelyek minden pontjához van olyan ε, hogy amely pontok ennél közelebb vannak, azok is a halmazhoz tartoznak. Topologikus terekben ezt környezetekkel fogalmazzák át: egy halmaz nyílt, ha minden pontjának egy környezetét is tartalmazza. A definíciónak az a lényege, hogy mivel a nyílt halmaz minden pontját a halmaz saját elemei veszik körül, ezért nem tartalmazza a határát. A komplementere tartalmazza a halmaz határát, ami az ő határa is, tehát a zárt halmazokról tudjuk, hogy tartalmazzák a határukat. A topologikus terekben a nyílt halmazokat használják ahhoz, hogy kifejezzék a pontok közelségét. Ezt használják például a folytonos függvények definíciójának átviteléhez. A topologikus terek szerkezetét az határozza meg, hogy mely halmazok nyíltak bennük. A nyílt halmazok rendszerét ismét topológiának hívják. Ezek a matematika kapcsolódó területein is szervező erővel bírnak, például a az , ami a topológiai szemléletét tükrözi, vagy a differenciáltopológia differenciálható sokaságai, ahol minden ponthoz van őt tartalmazó nyílt halmaz, amely homeomorf egy euklideszi nyílt gömbbel. A pontok és a halmazok elválaszthatóságát is nyílt halmazokkal fogalmazzák meg. Az pontok vagy halmazok elválasztásáról szólnak. A topologikus terek kategóriájában a morfizmusok a két topologikus tér között menő folytonos függvények, amelyek megőrzik a topologikus terek szerkezetét, és közeli pontokat közeli pontokba visznek. A metrikus terek topológiájában egy függvény méri a távolságot az egyes pontok között. Ez a távolságfüggvény adja meg a tér topológiáját, vagyis hogy mely halmazok tekinthetők nyíltnak. A metrikus terekben vizsgálhatók az is, amelyek megőrzik a távolságot a topologikus invariánsok mellett. A topológia szempontjából jól ismerjük a topologikus tereket, bár vannak megoldatlan problémák is.
prov:wasDerivedFrom
wikipedia-hu:Nyílt_halmaz?oldid=23244477&ns=0
dbo:wikiPageLength
14243
foaf:isPrimaryTopicOf
wikipedia-hu:Nyílt_halmaz
Subject Item
wikipedia-hu:Nyílt_halmaz
foaf:primaryTopic
dbpedia-hu:Nyílt_halmaz