This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n9http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Theorema_egregium
rdfs:label
Theorema egregium
owl:sameAs
freebase:m.01mdkz
dct:subject
n9:Differenciálgeometria
dbo:wikiPageID
462617
dbo:wikiPageRevisionID
22056829
prop-hu:wikiPageUsesTemplate
n12:ISBN n12:Fordítás
dbo:abstract
A Theorema Egregium (magyarul: „Nevezetes Tétel”) a differenciálgeometria fontos tétele, amely kimondja, hogy egy felület Gauss-görbülete csak a felület első alapmennyiségeitől függ. Más szavakkal: a felület Gauss-görbületét meghatározza a felület metrikája (azaz, hogy a felületen hogyan mérünk szöget illetve távolságot), és ez független a felület térbeli alakjától (amit a második alapmennyiségek írnak le). Ez messze nem nyilvánvaló, hiszen a felület függenek a második alapmennyiségektől. Mivel az első alapmennyiségek izometriával szemben invariánsak, ezért a tétel értelmében a Gauss-görbület is.
prov:wasDerivedFrom
wikipedia-hu:Theorema_egregium?oldid=22056829&ns=0
dbo:wikiPageLength
3575
foaf:isPrimaryTopicOf
wikipedia-hu:Theorema_egregium
Subject Item
wikipedia-hu:Theorema_egregium
foaf:primaryTopic
dbpedia-hu:Theorema_egregium