This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n4http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Trigonometria
rdfs:label
Trigonometria
owl:sameAs
freebase:m.07jj9
dct:subject
n4:Trigonometria
dbo:wikiPageID
136537
dbo:wikiPageRevisionID
23580147
prop-hu:wikiPageUsesTemplate
n10:Jegyzetek n10:Portál
dbo:abstract
Trigonometria (az ógörög τρίγωνος / trigonosz – "háromszög", és μέτρον / metron – "mérés" szavakból) a matematika egy ága, mely a geometriában a háromszögek oldalai és szögei közötti összefüggésekkel, az analízisben az őket leíró trigonometrikus függvényekkel foglalkozik. A trigonometria feladatai közé tartozik ezek tulajdonságainak vizsgálata és az ezeken alapuló számítások. A gömbi háromszögeket a írja le. A gömbi szögfüggvények is a szögfüggvények közé tartoznak; ugyanúgy elemzik és felhasználják őket, mint a többit. A hiperbolikus geometriából származtathatók a hiperbolikus szögfüggvények. A közönséges, gömbi és hiperbolikus szögfüggvények mind bevezethetők analitikus úton is. Vizsgálatukkal a geometriából eredeztethető trigonometria az analízis részévé válik.
prov:wasDerivedFrom
wikipedia-hu:Trigonometria?oldid=23580147&ns=0
dbo:wikiPageLength
8673
foaf:isPrimaryTopicOf
wikipedia-hu:Trigonometria
Subject Item
wikipedia-hu:Trigonometria
foaf:primaryTopic
dbpedia-hu:Trigonometria