Property Value
dbo:abstract
  • A számelméletben azokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege a másik számmal egyenlő és fordítva, barátságos számoknak hívjuk. A társas számok speciális esetei. Ilyen például a (220; 284) számpár. 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110. 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142. 1 + 2 + 4 + 71 + 142 = 220. A barátságos számpárok 2 periódusú osztóösszeg-sorozatot alkotnak. A barátságos számpárok közül a kisebb mindig bővelkedő, a nagyobb pedig hiányos szám. (Azokat a számokat, ahol az osztók összege kisebb a számnál, hiányos számoknak nevezzük, amelyeknél nagyobb, azokat bővelkedő számoknak, amelyeknél pedig egyenlő, tökéletes számoknak hívjuk.) (hu)
  • A számelméletben azokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege a másik számmal egyenlő és fordítva, barátságos számoknak hívjuk. A társas számok speciális esetei. Ilyen például a (220; 284) számpár. 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110. 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142. 1 + 2 + 4 + 71 + 142 = 220. A barátságos számpárok 2 periódusú osztóösszeg-sorozatot alkotnak. A barátságos számpárok közül a kisebb mindig bővelkedő, a nagyobb pedig hiányos szám. (Azokat a számokat, ahol az osztók összege kisebb a számnál, hiányos számoknak nevezzük, amelyeknél nagyobb, azokat bővelkedő számoknak, amelyeknél pedig egyenlő, tökéletes számoknak hívjuk.) (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 40955 (xsd:integer)
dbo:wikiPageLength
  • 7800 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23724342 (xsd:integer)
prop-hu:date
  • 20051222070840 (xsd:decimal)
prop-hu:url
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Barátságos számok (hu)
  • Barátságos számok (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of