dbo:abstract
|
- Az Euler-egyenletek a belső súrlódás (viszkozitás) nélküli ideális közeg mozgását leíró differenciálegyenlet rendszer. Nevét Leonhard Euler után kapta. Az egyenletek a tömeg, az impulzus és az energia megmaradását fejezik ki és a Navier-Stokes egyenletek viszkozitás és hővezetés nélküli alakjának felelnek meg. Euler csak a folytonosságot és az impulzus megmaradását vezette le, de a folyadékok mechanikája irodalma általában az energiamegmaradással bővített egyenletrendszert is Euler-egyenleteknek hívja. A Navier-Stokes egyenletekhez hasonlóan az Euler-egyenleteket is kétféle alakban szokás megadni: az egyik esetben az egyenleteket az álló koordináta-rendszerhez képest rögzített közegtérfogatra írják fel, a másik esetben pedig egy közegtérfogat változásait írják le, amint az áramlással együtt továbbhalad. Az Euler-egyenletek mind összenyomható (gáz), mind összenyomhatatlan (folyadék) közegre érvényesek, ez utóbbi esetben a sebességek vektorterének divergenciája zérus. (hu)
- Az Euler-egyenletek a belső súrlódás (viszkozitás) nélküli ideális közeg mozgását leíró differenciálegyenlet rendszer. Nevét Leonhard Euler után kapta. Az egyenletek a tömeg, az impulzus és az energia megmaradását fejezik ki és a Navier-Stokes egyenletek viszkozitás és hővezetés nélküli alakjának felelnek meg. Euler csak a folytonosságot és az impulzus megmaradását vezette le, de a folyadékok mechanikája irodalma általában az energiamegmaradással bővített egyenletrendszert is Euler-egyenleteknek hívja. A Navier-Stokes egyenletekhez hasonlóan az Euler-egyenleteket is kétféle alakban szokás megadni: az egyik esetben az egyenleteket az álló koordináta-rendszerhez képest rögzített közegtérfogatra írják fel, a másik esetben pedig egy közegtérfogat változásait írják le, amint az áramlással együtt továbbhalad. Az Euler-egyenletek mind összenyomható (gáz), mind összenyomhatatlan (folyadék) közegre érvényesek, ez utóbbi esetben a sebességek vektorterének divergenciája zérus. (hu)
|