dbo:abstract
|
- A katenoid egy a 3 dimenziós euklideszi térben, ami a láncgörbének a saját vezéregyenese körüli elforgatásával jön létre. A síkot nem számítva, ez az elsőként felfedezett minimálfelület. Minimálfelület voltát Leonhard Euler állapította meg és igazolta 1744-ben. publikációja ugyancsak az e témával foglalkozó korai munkák közé tartozik. Csak két (forgásfelület, ami egyben minimálfelület is) létezik: a sík és a katenoid. A katenoid a klasszikus Descartes-féle koordináta-rendszerben az alábbi paraméteres egyenletekkel definiálható: ahol u és v valós paraméterek, c egy nem nulla értékű valós állandó. Hengerkoordináta-rendszerben: ahol c egy valós állandó. A katenoid fizikai modellje létrehozható úgy, hogy két kör alakú drótot szorosan egymás mellett szappanos oldatba mártunk, majd onnan kiemelve lassan távolítani kezdjük egymástól őket. (hu)
- A katenoid egy a 3 dimenziós euklideszi térben, ami a láncgörbének a saját vezéregyenese körüli elforgatásával jön létre. A síkot nem számítva, ez az elsőként felfedezett minimálfelület. Minimálfelület voltát Leonhard Euler állapította meg és igazolta 1744-ben. publikációja ugyancsak az e témával foglalkozó korai munkák közé tartozik. Csak két (forgásfelület, ami egyben minimálfelület is) létezik: a sík és a katenoid. A katenoid a klasszikus Descartes-féle koordináta-rendszerben az alábbi paraméteres egyenletekkel definiálható: ahol u és v valós paraméterek, c egy nem nulla értékű valós állandó. Hengerkoordináta-rendszerben: ahol c egy valós állandó. A katenoid fizikai modellje létrehozható úgy, hogy két kör alakú drótot szorosan egymás mellett szappanos oldatba mártunk, majd onnan kiemelve lassan távolítani kezdjük egymástól őket. (hu)
|