dbo:abstract
|
- A matematikában (a statisztikában) a korreláció jelzi két tetszőleges érték közötti lineáris kapcsolat nagyságát és irányát (avagy ezek egymáshoz való viszonyát). Az általános statisztikai használat során a korreláció jelzi azt, hogy két tetszőleges érték nem független egymástól. Az ilyen széles körű használat során számos együttható, érték jellemzi a korrelációt, alkalmazkodva az adatok fajtájához. A korreláció csak a lineáris kapcsolatot jelzi. Például egy valószínűségi változó és négyzete korrelációja lehet nulla. Ha két véletlen mennyiség korrelációja nulla, akkor korrelálatlanok; ilyenkor a kapcsolatot, ha van, másként kell jellemezni, például feltételes valószínűségekkel. A normális eloszlású valószínűségi változókra jellemző, hogy ha korrelálatlanok, akkor függetlenek is. Így a korreláció jól alkalmazható normális eloszlásúnak tekinthető mérhető mennyiségek közötti kapcsolat erősségének mérésére. Másfajta összefüggések kimutatására más eszközök kellenek. Használható például a : vagy a feltételes valószínűségek. Az A eseménynek a B eseményre vonatkozó feltételes valószínűsége megadja az A esemény bekövetkezésének a valószínűségét, feltéve hogy a B esemény bekövetkezik. Van olyan, a korrelációhoz hasonló eszköz, amivel bármilyen függvénykapcsolat kimutatható. (hu)
- A matematikában (a statisztikában) a korreláció jelzi két tetszőleges érték közötti lineáris kapcsolat nagyságát és irányát (avagy ezek egymáshoz való viszonyát). Az általános statisztikai használat során a korreláció jelzi azt, hogy két tetszőleges érték nem független egymástól. Az ilyen széles körű használat során számos együttható, érték jellemzi a korrelációt, alkalmazkodva az adatok fajtájához. A korreláció csak a lineáris kapcsolatot jelzi. Például egy valószínűségi változó és négyzete korrelációja lehet nulla. Ha két véletlen mennyiség korrelációja nulla, akkor korrelálatlanok; ilyenkor a kapcsolatot, ha van, másként kell jellemezni, például feltételes valószínűségekkel. A normális eloszlású valószínűségi változókra jellemző, hogy ha korrelálatlanok, akkor függetlenek is. Így a korreláció jól alkalmazható normális eloszlásúnak tekinthető mérhető mennyiségek közötti kapcsolat erősségének mérésére. Másfajta összefüggések kimutatására más eszközök kellenek. Használható például a : vagy a feltételes valószínűségek. Az A eseménynek a B eseményre vonatkozó feltételes valószínűsége megadja az A esemény bekövetkezésének a valószínűségét, feltéve hogy a B esemény bekövetkezik. Van olyan, a korrelációhoz hasonló eszköz, amivel bármilyen függvénykapcsolat kimutatható. (hu)
|