dbo:abstract
|
- A matematika területén egy adott n természetes számhoz tartozó Motzkin-szám azt határozza meg, hogy egy körön elhelyezkedő n pont között hányféleképpen lehet egymást nem metsző húrokat rajzolni (nem feltétlenül minden pontba húrt rajzolva). A Motzkin-féle számokat 20. századi matematikusról nevezték el, és a matematika nagyon távol eső területein alkalmazzák őket, köztük a geometriában, a kombinatorikában és a számelméletben. A Motzkin-számok -re a következő sorozatot alkotják: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209, 593742784829, ... (A001006 sorozat az OEIS-ben) (hu)
- A matematika területén egy adott n természetes számhoz tartozó Motzkin-szám azt határozza meg, hogy egy körön elhelyezkedő n pont között hányféleképpen lehet egymást nem metsző húrokat rajzolni (nem feltétlenül minden pontba húrt rajzolva). A Motzkin-féle számokat 20. századi matematikusról nevezték el, és a matematika nagyon távol eső területein alkalmazzák őket, köztük a geometriában, a kombinatorikában és a számelméletben. A Motzkin-számok -re a következő sorozatot alkotják: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209, 593742784829, ... (A001006 sorozat az OEIS-ben) (hu)
|