Property Value
dbo:abstract
  • Az axiomatikus halmazelmélet (Neumann- Bernays- Gödel (NBG) axiomatikus halmazelmélet) a matematika halmazelmélet nevű résztudományának axiomatikus-deduktív módon történő kifejtése. Megkülönböztetjük korai elődjétől az „intuitív” vagy naiv halmazelmélettől, mely Cantor nevéhez fűződik és mely a keletkezésének idején még nem ismert logikai problémák fellépése miatt ellentmondásosnak bizonyult. Minden axiomatikus halmazelmélet feltételez egy formális nyelvet, melyek kifejezéseivel írjuk le az elmélet (ti. az adott halmazelmélet) kijelentéseit. Egy matematikai elmélet formalizálhatósága (majd axiomatizálhatósága) azért fontos, hogy magát az elméletet és a benne megfogalmazott kijelentéseket szintén matematikai vizsgálatok (matematikai logikai vizsgálatok) tárgyává tehessük. Ezek a vizsgálatok döntik el például azt, hogy az elmélet ellentmondásmentes-e, negációteljes-e, illetve axiómái függetlenek-e egymástól. Ettől függetlenül az elterjedtebb formális-axiomatikus elméletek lényegében ugyanazokat a kijelentéseket szándékoznak formalizálni, így tulajdonképpen beszélhetünk egy egységes „nyelvfüggetlen” axiomatikus halmazelméletről. Azok a lényeges különbségek amiben az egyes formalizációk eltérnek, az „informális” elméletben is megjelennek, azaz, hogy mik az axiómák. Másrészt a mindennapi matematikai gyakorlat is ezt az „informális” halmazelméletet használja, leszámítva a kifejezetten formális nyelvi vizsgálatokat végző matematikai logikát. (hu)
  • Az axiomatikus halmazelmélet (Neumann- Bernays- Gödel (NBG) axiomatikus halmazelmélet) a matematika halmazelmélet nevű résztudományának axiomatikus-deduktív módon történő kifejtése. Megkülönböztetjük korai elődjétől az „intuitív” vagy naiv halmazelmélettől, mely Cantor nevéhez fűződik és mely a keletkezésének idején még nem ismert logikai problémák fellépése miatt ellentmondásosnak bizonyult. Minden axiomatikus halmazelmélet feltételez egy formális nyelvet, melyek kifejezéseivel írjuk le az elmélet (ti. az adott halmazelmélet) kijelentéseit. Egy matematikai elmélet formalizálhatósága (majd axiomatizálhatósága) azért fontos, hogy magát az elméletet és a benne megfogalmazott kijelentéseket szintén matematikai vizsgálatok (matematikai logikai vizsgálatok) tárgyává tehessük. Ezek a vizsgálatok döntik el például azt, hogy az elmélet ellentmondásmentes-e, negációteljes-e, illetve axiómái függetlenek-e egymástól. Ettől függetlenül az elterjedtebb formális-axiomatikus elméletek lényegében ugyanazokat a kijelentéseket szándékoznak formalizálni, így tulajdonképpen beszélhetünk egy egységes „nyelvfüggetlen” axiomatikus halmazelméletről. Azok a lényeges különbségek amiben az egyes formalizációk eltérnek, az „informális” elméletben is megjelennek, azaz, hogy mik az axiómák. Másrészt a mindennapi matematikai gyakorlat is ezt az „informális” halmazelméletet használja, leszámítva a kifejezetten formális nyelvi vizsgálatokat végző matematikai logikát. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32705 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 8835 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 22583857 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Axiomatikus halmazelmélet (hu)
  • Axiomatikus halmazelmélet (hu)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of