Property Value
dbo:abstract
  • A matematikában, közelebbről az algebrában a Boole-algebra (vagy Boole-háló) az a kétműveletes algebrai struktúra (egy halmaz, az elemei között értelmezett két művelettel ellátva), amely a halmazműveletek, a logikai műveletek és az eseményalgebra műveleteinek közös tulajdonságaival rendelkezik. Matematikai szemszögből a Boole-algebra olyan legalább kételemű egységelemes, zéruselemes háló, mely disztributív és komplementumos. Ez utóbbi tulajdonság azt jelenti, hogy az halmaz minden a elemére teljesül, hogy létezik olyan elem, hogy: ahol 1 az egységelem, 0 a zéruselem, -t pedig az komplementerének nevezzük. George Boole angol matematikus mutatott rá először arra, hogy az alábbi három terület közötti szoros algebrai jellegű kapcsolat áll fenn: * egy tetszőleges H halmaz hatványhalmaza, a H részhalmazai közötti unió és metszet tulajdonsággal; az A részhalmaz komplementere a H azon elemei, melyek nincsenek benne A-ban * az „igazságértékek” halmaza, a logikai összeadás és a szorzás műveletével (mely rendre a „vagy” és az „és” szerepét tölti be); az elem komplementere , az elem negációja * a valószínűség-elmélet egy eseménytere, az események közötti összeg és szorzat műveletével; az komplementer az az esemény, hogy az esemény nem következik be. Mivel az igaz értéket bináris számokkal vagy logikai áramkörök feszültségszintjeivel is azonosíthatjuk, a párhuzam ezekre is fennáll. Így a Boole-algebra elmélete rengeteg gyakorlati alkalmazással bír a villamosmérnöki szakma és a számítógép-tudomány területén, valamint a matematikai logikában. Erről lásd még: Boole-algebra (informatika). Minden Boole-algebra megfeleltethető egy relációs struktúrának az megfeleltetéssel. Ez a hálóelméleti definíció nyújt lehetőséget a Boole-algebra általánosítására. Ez a , mely nem tartalmazza azt a megkötést, hogy egy kijelentésnek mindenképpen igaznak vagy hamisnak kell lennie (lásd a fenti komplementer azonosságot). Míg a Boole-algebra a klasszikus propozicionális logika algebrai interpretációjának tekinthető, addig a Heyting-algebra az intuicionista logika algebrai interpretációját adja. (hu)
  • A matematikában, közelebbről az algebrában a Boole-algebra (vagy Boole-háló) az a kétműveletes algebrai struktúra (egy halmaz, az elemei között értelmezett két művelettel ellátva), amely a halmazműveletek, a logikai műveletek és az eseményalgebra műveleteinek közös tulajdonságaival rendelkezik. Matematikai szemszögből a Boole-algebra olyan legalább kételemű egységelemes, zéruselemes háló, mely disztributív és komplementumos. Ez utóbbi tulajdonság azt jelenti, hogy az halmaz minden a elemére teljesül, hogy létezik olyan elem, hogy: ahol 1 az egységelem, 0 a zéruselem, -t pedig az komplementerének nevezzük. George Boole angol matematikus mutatott rá először arra, hogy az alábbi három terület közötti szoros algebrai jellegű kapcsolat áll fenn: * egy tetszőleges H halmaz hatványhalmaza, a H részhalmazai közötti unió és metszet tulajdonsággal; az A részhalmaz komplementere a H azon elemei, melyek nincsenek benne A-ban * az „igazságértékek” halmaza, a logikai összeadás és a szorzás műveletével (mely rendre a „vagy” és az „és” szerepét tölti be); az elem komplementere , az elem negációja * a valószínűség-elmélet egy eseménytere, az események közötti összeg és szorzat műveletével; az komplementer az az esemény, hogy az esemény nem következik be. Mivel az igaz értéket bináris számokkal vagy logikai áramkörök feszültségszintjeivel is azonosíthatjuk, a párhuzam ezekre is fennáll. Így a Boole-algebra elmélete rengeteg gyakorlati alkalmazással bír a villamosmérnöki szakma és a számítógép-tudomány területén, valamint a matematikai logikában. Erről lásd még: Boole-algebra (informatika). Minden Boole-algebra megfeleltethető egy relációs struktúrának az megfeleltetéssel. Ez a hálóelméleti definíció nyújt lehetőséget a Boole-algebra általánosítására. Ez a , mely nem tartalmazza azt a megkötést, hogy egy kijelentésnek mindenképpen igaznak vagy hamisnak kell lennie (lásd a fenti komplementer azonosságot). Míg a Boole-algebra a klasszikus propozicionális logika algebrai interpretációjának tekinthető, addig a Heyting-algebra az intuicionista logika algebrai interpretációját adja. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 76559 (xsd:integer)
dbo:wikiPageLength
  • 18608 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 19676542 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Boole-algebra (hu)
  • Boole-algebra (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of