dbo:abstract
|
- A matematikában a Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség (illetve angol nyelvterületen Cauchy–Schwarz-egyenlőtlenség, az orosz matematikai irodalomban pedig Cauchy–Bunyakovszkij-egyenlőtlenség) Augustin Louis Cauchyról, Hermann Amandus Schwarzról és Viktor Jakovlevics Bunyakovszkijról elnevezett egyenlőtlenség, mely gyakran használatos az euklideszi és Hilbert-terek elméletében, a végtelen sorok és szorzatok integrálásának elméletében és a valószínűségszámításban. Legáltalánosabb formában a (valós vagy komplex számtest feletti) V euklideszi vektortér tetszőleges x és y elemének skaláris szorzata abszolút értékének felső becslésére szolgál: Megjegyzendő, hogy egyenlőség pontosan akkor áll fenn, ha x és y lineárisan összefüggő. (hu)
- A matematikában a Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség (illetve angol nyelvterületen Cauchy–Schwarz-egyenlőtlenség, az orosz matematikai irodalomban pedig Cauchy–Bunyakovszkij-egyenlőtlenség) Augustin Louis Cauchyról, Hermann Amandus Schwarzról és Viktor Jakovlevics Bunyakovszkijról elnevezett egyenlőtlenség, mely gyakran használatos az euklideszi és Hilbert-terek elméletében, a végtelen sorok és szorzatok integrálásának elméletében és a valószínűségszámításban. Legáltalánosabb formában a (valós vagy komplex számtest feletti) V euklideszi vektortér tetszőleges x és y elemének skaláris szorzata abszolút értékének felső becslésére szolgál: Megjegyzendő, hogy egyenlőség pontosan akkor áll fenn, ha x és y lineárisan összefüggő. (hu)
|