Property Value
dbo:abstract
  • A Cayley-tétel a csoportelmélet egy jelentős eredménye, mely azt mondja ki, hogy minden G csoport izomorf a Sym(G) valamely részcsoportjával. A G csoport Sym(G) szimmetrikus csoportja nem más, mint a G halmaz önmagára vett összes bijekciójának (tehát permutációjának) csoportja a függvénykompozícióval mint művelettel ellátva. Az összes G → Sym(G) csoporthomomorfizmus meghatároz egy G-hatást a G-n, de a tétel szerint van egy kitüntetett T: G → Sym(G) homomorfizmus, mely izomorfizmus és amit a csoport reguláris- vagy Cayley-reprezentációjának nevezünk. A Cayley-tétel következménye, hogy minden tétel, ami permutációcsoportokra igaz, az csoportokra is igaz, mivel minden csoport ábrázolható permutációcsoportként. Az elnevezés Arthur Cayley nevét őrzi. (hu)
  • A Cayley-tétel a csoportelmélet egy jelentős eredménye, mely azt mondja ki, hogy minden G csoport izomorf a Sym(G) valamely részcsoportjával. A G csoport Sym(G) szimmetrikus csoportja nem más, mint a G halmaz önmagára vett összes bijekciójának (tehát permutációjának) csoportja a függvénykompozícióval mint művelettel ellátva. Az összes G → Sym(G) csoporthomomorfizmus meghatároz egy G-hatást a G-n, de a tétel szerint van egy kitüntetett T: G → Sym(G) homomorfizmus, mely izomorfizmus és amit a csoport reguláris- vagy Cayley-reprezentációjának nevezünk. A Cayley-tétel következménye, hogy minden tétel, ami permutációcsoportokra igaz, az csoportokra is igaz, mivel minden csoport ábrázolható permutációcsoportként. Az elnevezés Arthur Cayley nevét őrzi. (hu)
dbo:wikiPageID
  • 482556 (xsd:integer)
dbo:wikiPageLength
  • 6772 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 21998228 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Cayley-tétel (hu)
  • Cayley-tétel (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of