dbo:abstract
|
- A De Moivre-képlet, amely Abraham de Moivre francia matematikusról kapta a nevét, azt mondja ki, hogy minden x komplex szám (sajátos esetben minden valós szám) és minden n egész szám esetén fennáll a egyenlőség. A képlet azért fontos, mert összeköti a komplex számokat a trigonometrikus függvényekkel. Kifejtve a bal oldali kifejezést és összehasonlítva a valós és imaginárius részeket, levezethető cos(nx) illetve sin(nx) cos(x) és sin(x) függvényében. Ezen kívül, a képlet segítségével meg lehet határozni az n-edrendű egységgyököket, vagyis azokat a z komplex számokat, amelyekre zn = 1. (hu)
- A De Moivre-képlet, amely Abraham de Moivre francia matematikusról kapta a nevét, azt mondja ki, hogy minden x komplex szám (sajátos esetben minden valós szám) és minden n egész szám esetén fennáll a egyenlőség. A képlet azért fontos, mert összeköti a komplex számokat a trigonometrikus függvényekkel. Kifejtve a bal oldali kifejezést és összehasonlítva a valós és imaginárius részeket, levezethető cos(nx) illetve sin(nx) cos(x) és sin(x) függvényében. Ezen kívül, a képlet segítségével meg lehet határozni az n-edrendű egységgyököket, vagyis azokat a z komplex számokat, amelyekre zn = 1. (hu)
|