Property Value
dbo:abstract
  • A dezoxiribonukleinsav (közismert magyar rövidítése: DNS; angol rövidítése: DNA - deoxyribonucleic acid) a nukleinsavak (nukleotidokból felépülő szerves makromolekulák) csoportjába tartozó összetett molekula, amely a genetikai információt tárolja magában, ez az örökítőanyag. A DNS esetében a nukleotidok három következő komponensből épülnek fel: heterociklusos bázisok (adenin - A, guanin - G, citozin - C, timin - T), pentóz (dezoxiribóz - pontosabban 2-dezoxi-β-D-ribóz) és végül a harmadik alkotóelem a foszforsav. A DNS szerkezete lehetővé teszi az információ stabil tárolását, pontos megkettőződését (DNS-szintézis) és utódokba való átadását. A biológiai információ átadódását egyik generációról a másik generációra maga az örökítőanyag teszi lehetővé, amely nélkülözhetetlen a fajfennmaradás érdekében. A három fő makromolekula, a DNS, az RNS és a fehérjék az élet megjelenési formáinak esszenciális feltétele. A molekuláris biológia alapja maga a centrális dogma, vagyis a genetikai információáramlás iránya kevés kivételtől (pl. retrovírusok) eltekintve a következő: DNS → mRNS → fehérje → tulajdonság. A centrális dogma magába foglalja a transzkripciót (vagyis az átíródást: DNS → mRNS) és a transzlációt (vagyis az átfordítást: mRNS → fehérje). Nyugalmi helyzetben, amikor nincs sejtosztódás, a DNS egyedi és elég bonyolult struktúrákba, úgynevezett kromoszómákba tömörülnek. Sejtosztódáskor, a DNS-replikáció (DNS megkettőződés = DNS-szintézis) folyamata során ezeknek a kromoszómáknak a száma megkettőződik. Az eukarióta szervezetekben (ez alatt a következőket értjük: állatok, növények, gombák, protiszták) a DNS-t a maghártyán belül, vagyis a sejtmagban találjuk, illetve sejtmagon kívül a mitokondriumban (lásd mitokondriális genetika) és a kloroplasztiszokban is jelen van. Prokariótáknál pedig a sejtplazmában diffúz formában tárolódik a DNS. Vírusokban az örökítőanyag lehet DNS vagy RNS, és ezen szempontok alapján is csoportosíthatóak. A kromoszómákon belül a kromoszóma fehérjék, vagyis a hisztonok fontos szerepet játszanak a DNS stabilitásában, szerveződésében. Ez a kompakt struktúra ad útmutatást a DNS és más fehérjék között, segít abban, hogy mely DNS részek íródjanak át. A DNS kémiai szerkezete magában rejti az evolúcióban fontos szerkezetváltozás lehetőségét is. Az információ nemcsak a fehérjék szerkezetére vonatkozik, hanem módot nyújt azok szintézisének mennyiségi és időbeli szabályozására is, így végső soron a sejtek csaknem valamennyi funkciója a DNS ellenőrzése alatt áll. (hu)
  • A dezoxiribonukleinsav (közismert magyar rövidítése: DNS; angol rövidítése: DNA - deoxyribonucleic acid) a nukleinsavak (nukleotidokból felépülő szerves makromolekulák) csoportjába tartozó összetett molekula, amely a genetikai információt tárolja magában, ez az örökítőanyag. A DNS esetében a nukleotidok három következő komponensből épülnek fel: heterociklusos bázisok (adenin - A, guanin - G, citozin - C, timin - T), pentóz (dezoxiribóz - pontosabban 2-dezoxi-β-D-ribóz) és végül a harmadik alkotóelem a foszforsav. A DNS szerkezete lehetővé teszi az információ stabil tárolását, pontos megkettőződését (DNS-szintézis) és utódokba való átadását. A biológiai információ átadódását egyik generációról a másik generációra maga az örökítőanyag teszi lehetővé, amely nélkülözhetetlen a fajfennmaradás érdekében. A három fő makromolekula, a DNS, az RNS és a fehérjék az élet megjelenési formáinak esszenciális feltétele. A molekuláris biológia alapja maga a centrális dogma, vagyis a genetikai információáramlás iránya kevés kivételtől (pl. retrovírusok) eltekintve a következő: DNS → mRNS → fehérje → tulajdonság. A centrális dogma magába foglalja a transzkripciót (vagyis az átíródást: DNS → mRNS) és a transzlációt (vagyis az átfordítást: mRNS → fehérje). Nyugalmi helyzetben, amikor nincs sejtosztódás, a DNS egyedi és elég bonyolult struktúrákba, úgynevezett kromoszómákba tömörülnek. Sejtosztódáskor, a DNS-replikáció (DNS megkettőződés = DNS-szintézis) folyamata során ezeknek a kromoszómáknak a száma megkettőződik. Az eukarióta szervezetekben (ez alatt a következőket értjük: állatok, növények, gombák, protiszták) a DNS-t a maghártyán belül, vagyis a sejtmagban találjuk, illetve sejtmagon kívül a mitokondriumban (lásd mitokondriális genetika) és a kloroplasztiszokban is jelen van. Prokariótáknál pedig a sejtplazmában diffúz formában tárolódik a DNS. Vírusokban az örökítőanyag lehet DNS vagy RNS, és ezen szempontok alapján is csoportosíthatóak. A kromoszómákon belül a kromoszóma fehérjék, vagyis a hisztonok fontos szerepet játszanak a DNS stabilitásában, szerveződésében. Ez a kompakt struktúra ad útmutatást a DNS és más fehérjék között, segít abban, hogy mely DNS részek íródjanak át. A DNS kémiai szerkezete magában rejti az evolúcióban fontos szerkezetváltozás lehetőségét is. Az információ nemcsak a fehérjék szerkezetére vonatkozik, hanem módot nyújt azok szintézisének mennyiségi és időbeli szabályozására is, így végső soron a sejtek csaknem valamennyi funkciója a DNS ellenőrzése alatt áll. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 20738 (xsd:integer)
dbo:wikiPageLength
  • 15321 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23873546 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Dezoxiribonukleinsav (hu)
  • Dezoxiribonukleinsav (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of