Property Value
dbo:abstract
  • A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben az ismeretlen kifejezés egy differenciálható függvény, és az egyenlet a függvény és ennek deriváltja között teremt kapcsolatot. A problémák differenciálegyenletben való megfogalmazása a fizikában, mérnöki tudományokban, a közgazdaságtanban és még számos tudományban alapvető szerepet tölt be. Hogy mennyire fontosak az alkalmazásaikban a differenciálegyenletek, jól példázza Newton második törvénye. Ez nem mond ki mást, mint, hogy az elmozdulás idő szerinti második deriváltja egyenesen arányos az erővel. Ha az erő minden pillanatban csak a test helyzetétől függ, akkor ez a differenciálegyenlet így írható: ahol: a rezgő test tömege, a kitérés (út) függvénye az idő szerint az úgynevezett rugómerevség a gyorsulásaz ismeretlen függvény az x(t), ennek t szerinti második deriváltja az . és mindez csak akkor igaz, ha a tömeg nem változik, ha változik, akkor lásd: Newton törvényei. A differenciálegyenletek nem kizárólag akkor jutnak szerephez, ha az időben folyamatosan változnak az állapotjelzők értékei, hanem olyan diszkrét (elkülöníthető lépésekben lezajló) folyamatok esetében is (mint mondjuk egy sakkjátszma, vagy a természetben élőlénypopulációk növekedése), amikor a folyamat meghatározó állapotjellemzőinek folytonosként való kezelése tömegméretekben kielégítő helyességgel írja le a folyamatot. Egy mennyiség és megváltozásának kapcsolatára vagy megfigyelések utalnak, vagy feltételeznek egy elméleti relációt a jellemzők között. Például a növekedés általában függ magától a populáció nagyságától – ez egy közvetlenül a tapasztalatból származó modell. A bolygómozgás differenciálegyenletei viszont a newtoni mechanikából eredeztethetők. Általában egy (közönséges) differenciálegyenlet megoldását az y=y(x) alakban írjuk fel (szóban: y az x függvénye). Az egyenletben az y(x) jelölés helyett inkább csak az y-t használjuk. Feltesszük azonban, hogy y egy valós intervallumon értelmezett, legalább annyiszor differenciálható függvény, ahányadik deriváltja szerepel az egyenletben. Például az egy megoldása a (0,+∞)-en értelmezett (és ott differenciálható) függvény, egy másik a (2,+∞)-n értelmezett függvény. Az egyenleteket kielégítő megoldásfüggvények csak a legegyszerűbb esetekben fejezhetők ki zárt alakban. Sok esetben szükségtelen is kiszámolni a konkrét megoldásokat, sokkal többet tudhatunk meg a folyamatokról, ha a megoldások kapcsolatait vizsgáljuk. Más esetben szükséges kiszámítani a megoldás konkrét értékeit. Mindkét feladatra számítógépes módszereket használnak, az első inkább kvalitatív, míg a második kvantitatív eredményt szolgáltat. (hu)
  • A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben az ismeretlen kifejezés egy differenciálható függvény, és az egyenlet a függvény és ennek deriváltja között teremt kapcsolatot. A problémák differenciálegyenletben való megfogalmazása a fizikában, mérnöki tudományokban, a közgazdaságtanban és még számos tudományban alapvető szerepet tölt be. Hogy mennyire fontosak az alkalmazásaikban a differenciálegyenletek, jól példázza Newton második törvénye. Ez nem mond ki mást, mint, hogy az elmozdulás idő szerinti második deriváltja egyenesen arányos az erővel. Ha az erő minden pillanatban csak a test helyzetétől függ, akkor ez a differenciálegyenlet így írható: ahol: a rezgő test tömege, a kitérés (út) függvénye az idő szerint az úgynevezett rugómerevség a gyorsulásaz ismeretlen függvény az x(t), ennek t szerinti második deriváltja az . és mindez csak akkor igaz, ha a tömeg nem változik, ha változik, akkor lásd: Newton törvényei. A differenciálegyenletek nem kizárólag akkor jutnak szerephez, ha az időben folyamatosan változnak az állapotjelzők értékei, hanem olyan diszkrét (elkülöníthető lépésekben lezajló) folyamatok esetében is (mint mondjuk egy sakkjátszma, vagy a természetben élőlénypopulációk növekedése), amikor a folyamat meghatározó állapotjellemzőinek folytonosként való kezelése tömegméretekben kielégítő helyességgel írja le a folyamatot. Egy mennyiség és megváltozásának kapcsolatára vagy megfigyelések utalnak, vagy feltételeznek egy elméleti relációt a jellemzők között. Például a növekedés általában függ magától a populáció nagyságától – ez egy közvetlenül a tapasztalatból származó modell. A bolygómozgás differenciálegyenletei viszont a newtoni mechanikából eredeztethetők. Általában egy (közönséges) differenciálegyenlet megoldását az y=y(x) alakban írjuk fel (szóban: y az x függvénye). Az egyenletben az y(x) jelölés helyett inkább csak az y-t használjuk. Feltesszük azonban, hogy y egy valós intervallumon értelmezett, legalább annyiszor differenciálható függvény, ahányadik deriváltja szerepel az egyenletben. Például az egy megoldása a (0,+∞)-en értelmezett (és ott differenciálható) függvény, egy másik a (2,+∞)-n értelmezett függvény. Az egyenleteket kielégítő megoldásfüggvények csak a legegyszerűbb esetekben fejezhetők ki zárt alakban. Sok esetben szükségtelen is kiszámolni a konkrét megoldásokat, sokkal többet tudhatunk meg a folyamatokról, ha a megoldások kapcsolatait vizsgáljuk. Más esetben szükséges kiszámítani a megoldás konkrét értékeit. Mindkét feladatra számítógépes módszereket használnak, az első inkább kvalitatív, míg a második kvantitatív eredményt szolgáltat. (hu)
dbo:wikiPageID
  • 161700 (xsd:integer)
dbo:wikiPageLength
  • 12511 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23763422 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Differenciálegyenlet (hu)
  • Differenciálegyenlet (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:mainInterest of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of