dbo:abstract
|
- A dimenzióanalízisben a dimenziómentes mennyiség, vagy 1 dimenziójú mennyiség olyan mennyiség, melyhez nem társul fizikai dimenzió. Ennél fogva tehát ez csak egy „egyszerű szám”, a dimenziója mindig 1. A dimenziómentes mennyiségek széles körben használatosak a matematikában, fizikában, mérnöki- és gazdaságtudományban, valamint a mindennapi életben (pl.: számlálás). Számos jól ismert mennyiség, úgymint: π, e, és φ, dimenzió nélküli. Ezzel ellentétben a nem dimenziómentes mennyiségeket hosszúság-, terület-, idő-, stb. egységekben mérjük. A dimenziómentes mennyiségeket gyakran nem dimenziómentes mennyiségek szorzataként, vagy hányadosaként definiáljuk, melyek dimenziója a művelet során kiesik. Ez a helyzet például a deformáció mértékének esetében, melyet a hosszúságváltozás és az eredeti hossz hányadosaként definiálunk. Mivel mindkét mennyiség dimenziója L (hosszúság, az angol length szóból), az eredmény dimenziómentes mennyiség lesz. (hu)
- A dimenzióanalízisben a dimenziómentes mennyiség, vagy 1 dimenziójú mennyiség olyan mennyiség, melyhez nem társul fizikai dimenzió. Ennél fogva tehát ez csak egy „egyszerű szám”, a dimenziója mindig 1. A dimenziómentes mennyiségek széles körben használatosak a matematikában, fizikában, mérnöki- és gazdaságtudományban, valamint a mindennapi életben (pl.: számlálás). Számos jól ismert mennyiség, úgymint: π, e, és φ, dimenzió nélküli. Ezzel ellentétben a nem dimenziómentes mennyiségeket hosszúság-, terület-, idő-, stb. egységekben mérjük. A dimenziómentes mennyiségeket gyakran nem dimenziómentes mennyiségek szorzataként, vagy hányadosaként definiáljuk, melyek dimenziója a művelet során kiesik. Ez a helyzet például a deformáció mértékének esetében, melyet a hosszúságváltozás és az eredeti hossz hányadosaként definiálunk. Mivel mindkét mennyiség dimenziója L (hosszúság, az angol length szóból), az eredmény dimenziómentes mennyiség lesz. (hu)
|