Property Value
dbo:abstract
  • Az elektron (az ógörög ήλεκτρον, borostyán szóból) negatív elektromos töltésű elemi részecske, amely az atommaggal együtt alkot, és felelős a kémiai kötésekért. Szokásos jelölése: e‒. Az elektron feles spinű lepton; a leptonok első generációjának tagja. Antirészecskéje a pozitron. Az elektron tömege a proton tömegének 1/1836 része. Az elektronok és a többi elemi részecske kölcsönhatását a kémia és a magfizika vizsgálja. Antianyagbeli párja, a pozitron tömege és spinje megegyezik az elektronéval, azonban töltése ellentétes. Ha pozitron és elektron találkozik, energia felvillanás során mindkettő szétsugárzódik, és gamma-foton jön létre. Normális körülmények között az elektronok az atomok pozitív magjához kötődnek, mivel az ellentétes elektromos töltések vonzzák egymást. Egy semleges atomban az elektronok száma azonos a mag pozitív töltéseinek számával. Egy atomon belül az elektronok szabályosan elrendezett pályákon mozognak a mag körül, a mag és az elektronok közti vonzás legyőzi az elektronok közt fellépő taszító hatást. Az elektronpályák koncentrikus héjakba rendeződnek, és a magtól kifelé haladva egyre több az alhéj. A magtól való távolságtól függően a héjakban lévő elektronok kötése egyre lazább. Az elektronok elrendeződése meghatározza az atom méretét, és hatással van arra, hogy reagál más atomokra, részecskékre és az elektromágneses sugárzásra. Az ionizáció és a részecskék közötti arány megváltozása megváltoztatja a rendszer kötési energiáját. Két vagy több atom között az elektronok kicserélése vagy megosztása kémiai kötést hoz létre. Fontos szerepet tölt be kémiai reakciók legnagyobb csoportjában, a redoxireakciókban. Mivel spinje félegész szám a ħ Planck-állandóban mérve, a fermionok közé tartozik, így a Pauli-féle kizárási elv miatt két elektron nem foglalhatja el ugyanazt a kvantumállapotot. Ahogy a többi anyagi részecskének, az elektronnak is van hullámtermészete; így ütközhet más részecskékkel, és megtörhet, mint a fény. Hullámtermészete egyszerűbben vizsgálható, mert kis tömege miatt a is magasabb a tipikus energiaszinteken. Több fizikai jelenségben is kulcsfontosságú, így az elektromosságban, a mágnesességben, és a hővezetésben. Továbbá hat rá a többi alapvető erő: a gravitáció, az elektromágnesesség és a gyenge kölcsönhatás. Negatív töltése miatt az elektron elektromos erőteret hoz létre maga körül. Egy megfigyelőhöz képest mozogva mágneses mezőt hoz létre. A külső elektromágneses terek a Lorentz-törvény szerint hatnak rá. Részt vesz a magreakciókban is, például a csillagokban zajló fúzióban, és radioaktív bomlási folyamatokban is létrejön, ahol béta-részecskeként ismert. Nagy energiájú ütközések is elektronokat hoznak létre, például a kozmikus sugarak, amikor elérik a légkört. Gyorsításkor fotonok formájában vesz fel és ad le energiát. Laboratóriumi eszközökben akár egyetlen elektron vagy is tartható és megfigyelhető elektromágneses mezővel. Teleszkópokkal a külső elektronplazma is megfigyelhető. Sok alkalmazásban felhasználják, mint az elektronikában, a hegesztésben, a katódsugárcsövekben, az elektronmikroszkópokban, a sugárterápiában, a lézerekben vagy a részecskegyorsítókban. Először feltételezte 1838-ban az elektromos töltés egy láthatatlan egységét, hogy megmagyarázza az atomok kémiai viselkedését. George Johnstone Stoney nevezte el elektronnak ezt az elemi töltésegységet. Az elnevezés a görög elektron szóból származik, amely jelentése borostyánkő. A görögök borostyánkövet dörzsöltek meg más anyaggal, és tapasztalták az elektromos vonzó tulajdonságát. Kísérleti kimutatása 1897-ben Joseph John Thomsonnak sikerült először. (hu)
  • Az elektron (az ógörög ήλεκτρον, borostyán szóból) negatív elektromos töltésű elemi részecske, amely az atommaggal együtt alkot, és felelős a kémiai kötésekért. Szokásos jelölése: e‒. Az elektron feles spinű lepton; a leptonok első generációjának tagja. Antirészecskéje a pozitron. Az elektron tömege a proton tömegének 1/1836 része. Az elektronok és a többi elemi részecske kölcsönhatását a kémia és a magfizika vizsgálja. Antianyagbeli párja, a pozitron tömege és spinje megegyezik az elektronéval, azonban töltése ellentétes. Ha pozitron és elektron találkozik, energia felvillanás során mindkettő szétsugárzódik, és gamma-foton jön létre. Normális körülmények között az elektronok az atomok pozitív magjához kötődnek, mivel az ellentétes elektromos töltések vonzzák egymást. Egy semleges atomban az elektronok száma azonos a mag pozitív töltéseinek számával. Egy atomon belül az elektronok szabályosan elrendezett pályákon mozognak a mag körül, a mag és az elektronok közti vonzás legyőzi az elektronok közt fellépő taszító hatást. Az elektronpályák koncentrikus héjakba rendeződnek, és a magtól kifelé haladva egyre több az alhéj. A magtól való távolságtól függően a héjakban lévő elektronok kötése egyre lazább. Az elektronok elrendeződése meghatározza az atom méretét, és hatással van arra, hogy reagál más atomokra, részecskékre és az elektromágneses sugárzásra. Az ionizáció és a részecskék közötti arány megváltozása megváltoztatja a rendszer kötési energiáját. Két vagy több atom között az elektronok kicserélése vagy megosztása kémiai kötést hoz létre. Fontos szerepet tölt be kémiai reakciók legnagyobb csoportjában, a redoxireakciókban. Mivel spinje félegész szám a ħ Planck-állandóban mérve, a fermionok közé tartozik, így a Pauli-féle kizárási elv miatt két elektron nem foglalhatja el ugyanazt a kvantumállapotot. Ahogy a többi anyagi részecskének, az elektronnak is van hullámtermészete; így ütközhet más részecskékkel, és megtörhet, mint a fény. Hullámtermészete egyszerűbben vizsgálható, mert kis tömege miatt a is magasabb a tipikus energiaszinteken. Több fizikai jelenségben is kulcsfontosságú, így az elektromosságban, a mágnesességben, és a hővezetésben. Továbbá hat rá a többi alapvető erő: a gravitáció, az elektromágnesesség és a gyenge kölcsönhatás. Negatív töltése miatt az elektron elektromos erőteret hoz létre maga körül. Egy megfigyelőhöz képest mozogva mágneses mezőt hoz létre. A külső elektromágneses terek a Lorentz-törvény szerint hatnak rá. Részt vesz a magreakciókban is, például a csillagokban zajló fúzióban, és radioaktív bomlási folyamatokban is létrejön, ahol béta-részecskeként ismert. Nagy energiájú ütközések is elektronokat hoznak létre, például a kozmikus sugarak, amikor elérik a légkört. Gyorsításkor fotonok formájában vesz fel és ad le energiát. Laboratóriumi eszközökben akár egyetlen elektron vagy is tartható és megfigyelhető elektromágneses mezővel. Teleszkópokkal a külső elektronplazma is megfigyelhető. Sok alkalmazásban felhasználják, mint az elektronikában, a hegesztésben, a katódsugárcsövekben, az elektronmikroszkópokban, a sugárterápiában, a lézerekben vagy a részecskegyorsítókban. Először feltételezte 1838-ban az elektromos töltés egy láthatatlan egységét, hogy megmagyarázza az atomok kémiai viselkedését. George Johnstone Stoney nevezte el elektronnak ezt az elemi töltésegységet. Az elnevezés a görög elektron szóból származik, amely jelentése borostyánkő. A görögök borostyánkövet dörzsöltek meg más anyaggal, és tapasztalták az elektromos vonzó tulajdonságát. Kísérleti kimutatása 1897-ben Joseph John Thomsonnak sikerült először. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2760 (xsd:integer)
dbo:wikiPageLength
  • 120258 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23771272 (xsd:integer)
prop-hu:antirészecske
prop-hu:elemitöltés
  • -1 (xsd:integer)
prop-hu:felfedezés
prop-hu:felfedezéséve
  • 1897 (xsd:integer)
prop-hu:jel
  • e-, β- (hu)
  • e-, β- (hu)
prop-hu:kép
  • HAtomOrbitals.png (hu)
  • HAtomOrbitals.png (hu)
prop-hu:képaláírás
  • A hidrogénatom elektronjainak hullámfüggvényei (hu)
  • A hidrogénatom elektronjainak hullámfüggvényei (hu)
prop-hu:kölcsönhatások
  • gravitáció, elektromágneses, gyenge (hu)
  • gravitáció, elektromágneses, gyenge (hu)
prop-hu:mágnesenmomentumkitevő
  • -26 (xsd:integer)
prop-hu:mágnesesMomentum
  • −928,476 377 (hu)
  • −928,476 377 (hu)
prop-hu:név
  • Elektron (hu)
  • Elektron (hu)
prop-hu:osztály
  • lepton (hu)
  • lepton (hu)
prop-hu:sejtés
prop-hu:sejtéséve
  • 1838 (xsd:integer)
prop-hu:spin
  • 1 (xsd:integer)
prop-hu:töltésc
  • 1.602000 (xsd:double)
prop-hu:töltéskitevő
  • -19 (xsd:integer)
prop-hu:tömegdalton
  • 5.485000 (xsd:double)
prop-hu:tömegkg
  • 9.109000 (xsd:double)
prop-hu:tömegkgkitevő
  • -31 (xsd:integer)
prop-hu:wikiPageUsesTemplate
prop-hu:összetétel
dct:subject
rdfs:label
  • Elektron (hu)
  • Elektron (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of