dbo:abstract
|
- Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus. Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Például 252 és 105 legnagyobb közös osztója 21, amely legnagyobb közös osztója a 105 és a 147 = 252 − 105 számoknak is. Ez a helyettesítés csökkenti a nagyobb számot, így a cserék ismétlésével egyre kisebb számokat kapunk, egészen addig, amíg a két szám egyenlővé nem válik. Ez az eddigi számpárok, így az eredeti számpár legnagyobb közös osztója. Az algoritmus lépésein visszafelé menve találunk két egész (akár negatív) tényezőt, amelyek felhasználásával a legnagyobb közös osztó kifejezhető a két kiindulási szám lineáris kombinációjaként. Ha feltesszük, hogy a kivonások és a maradékos osztások ideje körülbelül megegyezik, akkor az algoritmusnak van egy gyorsabb változata is, amely a kivonások helyett maradékos osztással működik. Ennek lényege, hogy ha a nagyobb szám sokkal nagyobb, mint a kisebb, akkor sok kivonást kell elvégezni addig, amíg a két szám szerepe felcserélődik. A maradékképzés művelete ezt a sok kivonást egy lépésben végzi el. Az algoritmus akkor ér véget, amikor a maradék nulla lesz. Ekkor a legnagyobb közös osztó éppen a kisebb szám. Ezzel az algoritmus lépésszáma a kisebb szám logaritmusával arányossá válik (sohasem nagyobb, mint a tízes számrendszerbeli jegyek számának ötszöröse). A 20. század folyamán további optimalizációt végeztek. Az algoritmusnak számos alkalmazása van. A törtek egyszerűsítése mellett a moduláris aritmetika osztás műveletének megvalósításában is szerepel. Ehhez az ax ≡ c mod b kongruenciát kell megoldani, ezt a Lineáris diofantoszi egyenletek szakasz írja le részletesebben. Használható diofantoszi egyenletek megoldására, mint amilyen például a kínai maradéktételben szereplő szimultán kongruenciarendszer. Alkalmas lánctörtbe fejtéshez és irracionális számok közelítéséhez. Végül, de nem utolsósorban számelméleti tételek bizonyításának is hasznos segédeszköze; felhasználja a négynégyzetszám-tétel és a számelmélet alaptétele. Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
- <api batchcomplete="">Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus.Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Például 252 és 105 legnagyobb közös osztója 21, amely legnagyobb közös osztója a 105 és a 147 = 252 − 105 számoknak is. Ez a helyettesítés csökkenti a nagyobb számot, így a cserék ismétlésével egyre kisebb számokat kapunk, egészen addig, amíg a két szám egyenlővé nem válik. Ez az eddigi számpárok, így az eredeti számpár legnagyobb közös osztója. Az algoritmus lépésein visszafelé menve találunk két egész (akár negatív) tényezőt, amelyek felhasználásával a legnagyobb közös osztó kifejezhető a két kiindulási szám lineáris kombinผiójaként.Ha feltesszük, hogy a kivonások és a maradékos osztások ideje körülbelül megegyezik, akkor az algoritmusnak van egy gyorsabb változata is, amely a kivonások helyett maradékos osztással műkik. Ennek lényege, hogy ha a nagyobb szám sokkal nagyobb, mint a kisebb, akkor sok kivonást kell elvégezni addig, amíg a két szám szerepe felcserélᔝik. A maradékképzés művelete ezt a sok kivonást egy lépésben végzi el. Az algoritmus akkor ér véget, amikor a maradék nulla lesz. Ekkor a legnagyobb közös osztó éppen a kisebb szám. Ezzel az algoritmus lépésszáma a kisebb szám logaritmusával arányossá válik (sohasem nagyobb, mint a tízes számrendszerbeli jegyek számának ötszöröse). A 20. század folyamán tovi optimalizผiót végeztek.Az algoritmusnak számos alkalmazása van. A törtek egyszerűsítése mellett a moduláris aritmetika osztás műveletének megvalósításn is szerepel. Ehhez az ax ≡ c mod b kongruenciát kell megoldani, ezt a Lineáris diofantoszi egyenletek szakasz írja le részletesebben. Használható diofantoszi egyenletek megoldására, mint amilyen például a kínai maradéktételben szereplő szimultán kongruenciarendszer. Alkalmas lánctörtbe fejtéshez és irracionális számok közelítéséhez. Végül, de nem utolsósorban számelméleti tételek bizonyításának is hasznos segszköze; felhasználja a négynégyzetszám-tétel és a számelmélet alaptétele.Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
- Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus. Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Például 252 és 105 legnagyobb közös osztója 21, amely legnagyobb közös osztója a 105 és a 147 = 252 − 105 számoknak is. Ez a helyettesítés csökkenti a nagyobb számot, így a cserék ismétlésével egyre kisebb számokat kapunk, egészen addig, amíg a két szám egyenlővé nem válik. Ez az eddigi számpárok, így az eredeti számpár legnagyobb közös osztója. Az algoritmus lépésein visszafelé menve találunk két egész (akár negatív) tényezőt, amelyek felhasználásával a legnagyobb közös osztó kifejezhető a két kiindulási szám lineáris kombinációjaként. Ha feltesszük, hogy a kivonások és a maradékos osztások ideje körülbelül megegyezik, akkor az algoritmusnak van egy gyorsabb változata is, amely a kivonások helyett maradékos osztással működik. Ennek lényege, hogy ha a nagyobb szám sokkal nagyobb, mint a kisebb, akkor sok kivonást kell elvégezni addig, amíg a két szám szerepe felcserélődik. A maradékképzés művelete ezt a sok kivonást egy lépésben végzi el. Az algoritmus akkor ér véget, amikor a maradék nulla lesz. Ekkor a legnagyobb közös osztó éppen a kisebb szám. Ezzel az algoritmus lépésszáma a kisebb szám logaritmusával arányossá válik (sohasem nagyobb, mint a tízes számrendszerbeli jegyek számának ötszöröse). A 20. század folyamán további optimalizációt végeztek. Az algoritmusnak számos alkalmazása van. A törtek egyszerűsítése mellett a moduláris aritmetika osztás műveletének megvalósításában is szerepel. Ehhez az ax ≡ c mod b kongruenciát kell megoldani, ezt a Lineáris diofantoszi egyenletek szakasz írja le részletesebben. Használható diofantoszi egyenletek megoldására, mint amilyen például a kínai maradéktételben szereplő szimultán kongruenciarendszer. Alkalmas lánctörtbe fejtéshez és irracionális számok közelítéséhez. Végül, de nem utolsósorban számelméleti tételek bizonyításának is hasznos segédeszköze; felhasználja a négynégyzetszám-tétel és a számelmélet alaptétele. Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
- <api batchcomplete="">Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus.Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Például 252 és 105 legnagyobb közös osztója 21, amely legnagyobb közös osztója a 105 és a 147 = 252 − 105 számoknak is. Ez a helyettesítés csökkenti a nagyobb számot, így a cserék ismétlésével egyre kisebb számokat kapunk, egészen addig, amíg a két szám egyenlővé nem válik. Ez az eddigi számpárok, így az eredeti számpár legnagyobb közös osztója. Az algoritmus lépésein visszafelé menve találunk két egész (akár negatív) tényezőt, amelyek felhasználásával a legnagyobb közös osztó kifejezhető a két kiindulási szám lineáris kombinผiójaként.Ha feltesszük, hogy a kivonások és a maradékos osztások ideje körülbelül megegyezik, akkor az algoritmusnak van egy gyorsabb változata is, amely a kivonások helyett maradékos osztással műkik. Ennek lényege, hogy ha a nagyobb szám sokkal nagyobb, mint a kisebb, akkor sok kivonást kell elvégezni addig, amíg a két szám szerepe felcserélᔝik. A maradékképzés művelete ezt a sok kivonást egy lépésben végzi el. Az algoritmus akkor ér véget, amikor a maradék nulla lesz. Ekkor a legnagyobb közös osztó éppen a kisebb szám. Ezzel az algoritmus lépésszáma a kisebb szám logaritmusával arányossá válik (sohasem nagyobb, mint a tízes számrendszerbeli jegyek számának ötszöröse). A 20. század folyamán tovi optimalizผiót végeztek.Az algoritmusnak számos alkalmazása van. A törtek egyszerűsítése mellett a moduláris aritmetika osztás műveletének megvalósításn is szerepel. Ehhez az ax ≡ c mod b kongruenciát kell megoldani, ezt a Lineáris diofantoszi egyenletek szakasz írja le részletesebben. Használható diofantoszi egyenletek megoldására, mint amilyen például a kínai maradéktételben szereplő szimultán kongruenciarendszer. Alkalmas lánctörtbe fejtéshez és irracionális számok közelítéséhez. Végül, de nem utolsósorban számelméleti tételek bizonyításának is hasznos segszköze; felhasználja a négynégyzetszám-tétel és a számelmélet alaptétele.Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
|
rdfs:comment
|
- Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus. Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
- <api batchcomplete="">Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus.Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. (hu)
- Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus. Eredetileg egész számokra és szakaszokra használták, de a 19. században általánosították Gauss-egészekre és egyváltozós polinomokra. (hu)
- <api batchcomplete="">Az euklideszi algoritmus egy számelméleti algoritmus, amellyel két szám legnagyobb közös osztója határozható meg. Nevét az ókori görög matematikusról, Eukleidészről kapta, aki az Elemekben írta le (Kr. e. 300 körül). Az egyik legrégibb, gyakran használt algoritmus.Alapötlete az, hogy a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. (hu)
|