dbo:abstract
|
- Az absztrakt algebrában egy G csoport S részhalmaza generátorhalmaz, ha G minden eleme előáll S elemeinek és azok inverzeinek véges szorzataként. Egy G csoport S részhalmaza által generált részcsoportot, tehát azt a legkisebb csoportot, amely tartalmazza az S halmazt, így jelöljük: . Ez a legkisebb csoport egyértelműen létezik az S halmazt tartalmazó részcsoportok metszeteként. Az részcsoport pontosan azokat az elemeket tartalmazza, amelyek előállnak S elemeinek és azok inverzeinek véges szorzataként. Ha , akkor S generátorhalmaza a G csoportnak, más szóval S generálja G-t. Az S halmaz elemeit nevezik generátoroknak is. Ha S az üres halmaz, akkor az egységelemet tartalmazó csoport, mert az üres szorzat definíció szerint az egységelem. Ha S csak egyetlen x elemet tartalmaz, akkor használható a jelölés is a generált csoportra, ami nem más, mint x hatványainak halmaza, tehát az x elem által generált ciklikus csoport. Ha , akkor azt mondjuk, hogy x generálja a csoportot. Egy x elem pontosan akkor generálja a csoportot, ha x rendje |G|. (hu)
- Az absztrakt algebrában egy G csoport S részhalmaza generátorhalmaz, ha G minden eleme előáll S elemeinek és azok inverzeinek véges szorzataként. Egy G csoport S részhalmaza által generált részcsoportot, tehát azt a legkisebb csoportot, amely tartalmazza az S halmazt, így jelöljük: . Ez a legkisebb csoport egyértelműen létezik az S halmazt tartalmazó részcsoportok metszeteként. Az részcsoport pontosan azokat az elemeket tartalmazza, amelyek előállnak S elemeinek és azok inverzeinek véges szorzataként. Ha , akkor S generátorhalmaza a G csoportnak, más szóval S generálja G-t. Az S halmaz elemeit nevezik generátoroknak is. Ha S az üres halmaz, akkor az egységelemet tartalmazó csoport, mert az üres szorzat definíció szerint az egységelem. Ha S csak egyetlen x elemet tartalmaz, akkor használható a jelölés is a generált csoportra, ami nem más, mint x hatványainak halmaza, tehát az x elem által generált ciklikus csoport. Ha , akkor azt mondjuk, hogy x generálja a csoportot. Egy x elem pontosan akkor generálja a csoportot, ha x rendje |G|. (hu)
|