dbo:abstract
|
- A lineáris algebrában a Gersgorin-tétel azt mondja ki, hogy a komplex test feletti négyzetes mátrix sajátértékei a komplex síkon a főátló elemei körüli úgynevezett Gersgorin-körökön belül találhatóak. A tétel jelentős a numerikus módszerek elméletében, amennyiben lehetőséget ad a sajátértékek lokalizációjára és gyors közelítő meghatározására. A tétel Szemjon Aronovics Gersgorin szovjet matematikus eredménye. Legyen négyzetes mátrix, ahol . Az átlóelemhez tartozó Gersgorin-kör a komplex síknak az a körlemeze, amelynek középpontja , sugara pedig . A tétel tehát azt állítja, hogy a mátrix sajátértékei a Gersgorin-körök unióján belül helyezkednek el. Speciális esetben, ha a mátrix diagonális, akkor a Gersgorin-körök sugara nulla, és a tétel azt az ismert tényt fejezi ki, hogy a diagonális mátrix sajátértékei éppen a főátlóbeli elemei. (hu)
- A lineáris algebrában a Gersgorin-tétel azt mondja ki, hogy a komplex test feletti négyzetes mátrix sajátértékei a komplex síkon a főátló elemei körüli úgynevezett Gersgorin-körökön belül találhatóak. A tétel jelentős a numerikus módszerek elméletében, amennyiben lehetőséget ad a sajátértékek lokalizációjára és gyors közelítő meghatározására. A tétel Szemjon Aronovics Gersgorin szovjet matematikus eredménye. Legyen négyzetes mátrix, ahol . Az átlóelemhez tartozó Gersgorin-kör a komplex síknak az a körlemeze, amelynek középpontja , sugara pedig . A tétel tehát azt állítja, hogy a mátrix sajátértékei a Gersgorin-körök unióján belül helyezkednek el. Speciális esetben, ha a mátrix diagonális, akkor a Gersgorin-körök sugara nulla, és a tétel azt az ismert tényt fejezi ki, hogy a diagonális mátrix sajátértékei éppen a főátlóbeli elemei. (hu)
|