Property Value
dbo:abstract
  • Gyökkereső algoritmusnak nevezzük azokat a numerikus módszereket, vagy algoritmusokat, amelyeket valamely f függvény x gyökeinek (zérushelyeinek) meghatározására használunk, azaz olyan x-eket keresünk, melyekre teljesül, hogy f(x) = 0. A feladat itt nem közvetlenül a zérushely, hanem az azt egy adott pontossággal megközelítő eredmény meghatározása. A gyökkereső algoritmusok akkor is használhatók, ha nem létezik megoldóképlet. Ez a szócikk a valós és a komplex gyökök közelítésével foglalkozik, lebegőpontos számok használatával. Az egész gyökök vagy pontos megoldások megtalálása egy különböző probléma, amely nem kapcsolódik a közelítő megoldásokhoz. Az f(x) - g(x) = 0 egyenlet megoldása ugyanaz, mint az f(x) = g(x) egyenlet megoldása. Vagyis bármely egyenlet megoldása visszavezethető egy f(x) = 0 egyenlet megoldására, vagyis egy függvény zérushelyeinek a megtalálására. A numerikus gyökkereső módszerek iterációt alkalmaznak, vagyis egy sorozatot készítenek, amely remélhetőleg konvergens és a határérték a gyök. A sorozat kezdőértéke a kezdeti érték vagy a kiindulópont (initial guess). A numerikus módszerek ezután a további elemeket a megelőzők és a függvény segítségével állítják elő. A gyökkereső algoritmusokat és viselkedésüket a numerikus analízis tanulmányozza. Azok az algoritmusok nyilvánvalóan jobban teljesítenek, amelyek kihasználják a függvény ismert tulajdonságait. A fontos kérdések egy adott módszerrel kapcsolatban: viselkedés közeli gyökök esetén, számítási/kerekítési hibák hatása, hibatűrés, a konvergencia sebessége. (hu)
  • Gyökkereső algoritmusnak nevezzük azokat a numerikus módszereket, vagy algoritmusokat, amelyeket valamely f függvény x gyökeinek (zérushelyeinek) meghatározására használunk, azaz olyan x-eket keresünk, melyekre teljesül, hogy f(x) = 0. A feladat itt nem közvetlenül a zérushely, hanem az azt egy adott pontossággal megközelítő eredmény meghatározása. A gyökkereső algoritmusok akkor is használhatók, ha nem létezik megoldóképlet. Ez a szócikk a valós és a komplex gyökök közelítésével foglalkozik, lebegőpontos számok használatával. Az egész gyökök vagy pontos megoldások megtalálása egy különböző probléma, amely nem kapcsolódik a közelítő megoldásokhoz. Az f(x) - g(x) = 0 egyenlet megoldása ugyanaz, mint az f(x) = g(x) egyenlet megoldása. Vagyis bármely egyenlet megoldása visszavezethető egy f(x) = 0 egyenlet megoldására, vagyis egy függvény zérushelyeinek a megtalálására. A numerikus gyökkereső módszerek iterációt alkalmaznak, vagyis egy sorozatot készítenek, amely remélhetőleg konvergens és a határérték a gyök. A sorozat kezdőértéke a kezdeti érték vagy a kiindulópont (initial guess). A numerikus módszerek ezután a további elemeket a megelőzők és a függvény segítségével állítják elő. A gyökkereső algoritmusokat és viselkedésüket a numerikus analízis tanulmányozza. Azok az algoritmusok nyilvánvalóan jobban teljesítenek, amelyek kihasználják a függvény ismert tulajdonságait. A fontos kérdések egy adott módszerrel kapcsolatban: viselkedés közeli gyökök esetén, számítási/kerekítési hibák hatása, hibatűrés, a konvergencia sebessége. (hu)
dbo:wikiPageID
  • 507589 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 3852 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 20035253 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Gyökkereső algoritmus (hu)
  • Gyökkereső algoritmus (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of