dbo:abstract
|
- A matematika, azon belül a számelmélet területén egy k-hipertökéletes szám (hyperperfect number) olyan n természetes szám, amire fennáll az n = 1 + k(σ(n) − n − 1) egyenlőség – σ(n) az osztóösszeg-függvényt (azaz n összes pozitív osztóját) jelöli. Általánosságban egy szám akkor hipertökéletes, ha valamely pozitív egész k-ra k-hipertökéletes. A hipertökéletes számok a tökéletes számok általánosításai, melyek ebben a felírásban 1-hipertökéletesek. A k-hipertökéletes számok sorozatának első néhány eleme: 6, 21, 28, 301, 325, 496, 697, , 1909, ... (A034897 sorozat az OEIS-ben), a hozzájuk tartozó k értékek pedig: 1, 2, 1, 6, 3, 1, 12, 18, 18, 12... (A034898 sorozat az OEIS-ben). Az első néhány k-hipertökéletes, de nem tökéletes szám pedig: 21, 301, 325, 697, 1333, ... (A007592 sorozat az OEIS-ben). (hu)
- A matematika, azon belül a számelmélet területén egy k-hipertökéletes szám (hyperperfect number) olyan n természetes szám, amire fennáll az n = 1 + k(σ(n) − n − 1) egyenlőség – σ(n) az osztóösszeg-függvényt (azaz n összes pozitív osztóját) jelöli. Általánosságban egy szám akkor hipertökéletes, ha valamely pozitív egész k-ra k-hipertökéletes. A hipertökéletes számok a tökéletes számok általánosításai, melyek ebben a felírásban 1-hipertökéletesek. A k-hipertökéletes számok sorozatának első néhány eleme: 6, 21, 28, 301, 325, 496, 697, , 1909, ... (A034897 sorozat az OEIS-ben), a hozzájuk tartozó k értékek pedig: 1, 2, 1, 6, 3, 1, 12, 18, 18, 12... (A034898 sorozat az OEIS-ben). Az első néhány k-hipertökéletes, de nem tökéletes szám pedig: 21, 301, 325, 697, 1333, ... (A007592 sorozat az OEIS-ben). (hu)
|