dbo:abstract
|
- Az inflexiós pont (vagy hajlási pont) a függvénytanban, függvények analízisénél használt kifejezés, azt a pontot jelenti, ahol a függvénygörbe görbületet vált. A görbe alakja az inflexiós pontban változik konkávból konvexbe, vagy fordítva. A gyakorlati életben ha az ember egy járművel hajtana végig a görbén, akkor egy pillanatig egyenes lenne a kormány, miközben a jármű jobbról balra, vagy balról jobbra fordul. Az alábbi definíciók ekvivalensek:
* Ha az f függvénynek x0 pontban inflexiós pontja van, akkor az első deriváltjának x0-ban szélsőértéke van: minimum vagy maximum (lehet csak helyi szélsőérték is)
* Az inflexiós pont az a pont a görbén, amelyben a előjelet vált (azaz az inflexiós pontban a második derivált függvényértéke nulla f"(x0)=0).
* A függvénygörbének az a pontja, amelybe ha érintőt húzunk, akkor az érintő egyenese átmetszi a függvényt az inflexiós pontban. Ezt könnyű belátni, ugyanis a konvex és konkáv része a grafikonnak csak az érintő különböző oldalán lehet. (hu)
- Az inflexiós pont (vagy hajlási pont) a függvénytanban, függvények analízisénél használt kifejezés, azt a pontot jelenti, ahol a függvénygörbe görbületet vált. A görbe alakja az inflexiós pontban változik konkávból konvexbe, vagy fordítva. A gyakorlati életben ha az ember egy járművel hajtana végig a görbén, akkor egy pillanatig egyenes lenne a kormány, miközben a jármű jobbról balra, vagy balról jobbra fordul. Az alábbi definíciók ekvivalensek:
* Ha az f függvénynek x0 pontban inflexiós pontja van, akkor az első deriváltjának x0-ban szélsőértéke van: minimum vagy maximum (lehet csak helyi szélsőérték is)
* Az inflexiós pont az a pont a görbén, amelyben a előjelet vált (azaz az inflexiós pontban a második derivált függvényértéke nulla f"(x0)=0).
* A függvénygörbének az a pontja, amelybe ha érintőt húzunk, akkor az érintő egyenese átmetszi a függvényt az inflexiós pontban. Ezt könnyű belátni, ugyanis a konvex és konkáv része a grafikonnak csak az érintő különböző oldalán lehet. (hu)
|