dbo:abstract
|
- Az izomorfia két matematikai struktúrának az a tulajdonsága (kölcsönös viszonya), hogy elemeik a strukturális tulajdonságokat megőrizve egymásra kölcsönösen egyértelműen (bijektíven) leképezhetők. A struktúramegőrző és kölcsönösen egyértelmű (bijektív) leképezést, amely az izomorfia létét bizonyítja, nevezzük izomorfizmusnak. Szemléletesen ez azt jelenti, hogy a két struktúra „tulajdonképpen” ugyanaz, csak az elemeik másképp vannak elnevezve, jelölve. Az izomorfia a modern algebra alapvető fogalma. Két halmaz, amelyeken ugyanolyan algebrai struktúra (például csoport, gyűrű stb.) van értelmezve, izomorf, ha megadható a két halmaznak olyan egymásra való kölcsönösen egyértelmű leképezése, amely a struktúra műveleteivel összhangban van. (hu)
- Az izomorfia két matematikai struktúrának az a tulajdonsága (kölcsönös viszonya), hogy elemeik a strukturális tulajdonságokat megőrizve egymásra kölcsönösen egyértelműen (bijektíven) leképezhetők. A struktúramegőrző és kölcsönösen egyértelmű (bijektív) leképezést, amely az izomorfia létét bizonyítja, nevezzük izomorfizmusnak. Szemléletesen ez azt jelenti, hogy a két struktúra „tulajdonképpen” ugyanaz, csak az elemeik másképp vannak elnevezve, jelölve. Az izomorfia a modern algebra alapvető fogalma. Két halmaz, amelyeken ugyanolyan algebrai struktúra (például csoport, gyűrű stb.) van értelmezve, izomorf, ha megadható a két halmaznak olyan egymásra való kölcsönösen egyértelmű leképezése, amely a struktúra műveleteivel összhangban van. (hu)
|