dbo:abstract
|
- Kvaterniócsoportnak nevezzük (és rendszerint Q8-cal jelöljük) azt a nyolcelemű csoportot, amelyet az alábbi generátorok és definiáló relációk határoznak meg: Az egységelemet szokás szerint jelöli, szokásos jelölése , és az elemeket rendre a szimbólumokkal jelöljük. (A kvaterniócsoportban nincs definiálva az összeadás, tehát a mínuszjelek itt nem az ellentettképzést jelölik, csak puszta szimbólumok. Azonban a csoport beágyazható a kvaterniók algebrájába (Q8 a négy bázis-egységvektor által generált szorzáscsoport), és itt a mínuszjeles elemek éppen egybeesnek a bázis-egységvektorok ellentettjeivel. A kvaterniócsoport tehát olyan nyolcelemű csoport, amelyet az elemek alkotnak, ahol 1 az egységelem, és az összes többi elem a négyzetgyöke. , továbbá . Nem kommutatív. A kvaterniócsoportot William Rowan Hamilton fedezte fel a 19. században. (hu)
- Kvaterniócsoportnak nevezzük (és rendszerint Q8-cal jelöljük) azt a nyolcelemű csoportot, amelyet az alábbi generátorok és definiáló relációk határoznak meg: Az egységelemet szokás szerint jelöli, szokásos jelölése , és az elemeket rendre a szimbólumokkal jelöljük. (A kvaterniócsoportban nincs definiálva az összeadás, tehát a mínuszjelek itt nem az ellentettképzést jelölik, csak puszta szimbólumok. Azonban a csoport beágyazható a kvaterniók algebrájába (Q8 a négy bázis-egységvektor által generált szorzáscsoport), és itt a mínuszjeles elemek éppen egybeesnek a bázis-egységvektorok ellentettjeivel. A kvaterniócsoport tehát olyan nyolcelemű csoport, amelyet az elemek alkotnak, ahol 1 az egységelem, és az összes többi elem a négyzetgyöke. , továbbá . Nem kommutatív. A kvaterniócsoportot William Rowan Hamilton fedezte fel a 19. században. (hu)
|