Property Value
dbo:abstract
  • Közelítő megoldásnak nevezünk egyes matematikai problémákra olyan formában adott válaszokat, hogy azok az elvárt, ideális megoldástól egy elvárt mértéknél kevésbé térjenek el. Rendszerint rekurzív vagy iteratív módszereket veszünk igénybe ebből a célból, de ez egyáltalán nem kötelező. Azonban utóbbi esetben is mindenképpen kell egy kiindulási érték, amit szintén közelítő megoldásnak vagy 0. közelítésnek nevezünk. A probléma típusától függően a közelítő módszer realizációja ténylegesen más és más lehet, de általánosan igaz, hogy numerikus matematikai jellegű. Ez algebrai egyenletek esetén kevésbé problémás, azonban differenciálegyenletek esetén, példának okáért, már gondot okozhat, hogy nem egy függvényt, hanem annak csak egyes pontjait, vagy azok közelítését kapjuk meg. Ebből a megoldásfüggvény előállítása általában valamilyen heurisztikus módszer segítségével történhet - ha az egyáltalán zárt alakban előállítható. Szintén ide tartozik a függvények közelítése egyszerűbb vagy kényelmesebben kezelhető (esetleg ismert) függvények segítségével. Ennek során nem csak a közelítő függvényeket érdemes megadni, de egy lehetséges hibakorlátot is, azaz a valós függvény mennyiben tér el a közelítő függvénytől vagy függvénysorozattól. Ennek leggyakoribb formája a Fourier-sorok alkalmazása. A közelítő megoldásoknak a számítástechnikai alkalmazásokban van igen jelentős hasznuk, ugyanis az ilyen jellegű eredményeket a kézzel történő számításoknál nagyságrendekkel gyorsabban kaphatjuk meg, és azokból a tényleges megoldás jellemzően kikövetkeztethető, ha egyáltalán szükségünk van ilyenre. (hu)
  • Közelítő megoldásnak nevezünk egyes matematikai problémákra olyan formában adott válaszokat, hogy azok az elvárt, ideális megoldástól egy elvárt mértéknél kevésbé térjenek el. Rendszerint rekurzív vagy iteratív módszereket veszünk igénybe ebből a célból, de ez egyáltalán nem kötelező. Azonban utóbbi esetben is mindenképpen kell egy kiindulási érték, amit szintén közelítő megoldásnak vagy 0. közelítésnek nevezünk. A probléma típusától függően a közelítő módszer realizációja ténylegesen más és más lehet, de általánosan igaz, hogy numerikus matematikai jellegű. Ez algebrai egyenletek esetén kevésbé problémás, azonban differenciálegyenletek esetén, példának okáért, már gondot okozhat, hogy nem egy függvényt, hanem annak csak egyes pontjait, vagy azok közelítését kapjuk meg. Ebből a megoldásfüggvény előállítása általában valamilyen heurisztikus módszer segítségével történhet - ha az egyáltalán zárt alakban előállítható. Szintén ide tartozik a függvények közelítése egyszerűbb vagy kényelmesebben kezelhető (esetleg ismert) függvények segítségével. Ennek során nem csak a közelítő függvényeket érdemes megadni, de egy lehetséges hibakorlátot is, azaz a valós függvény mennyiben tér el a közelítő függvénytől vagy függvénysorozattól. Ennek leggyakoribb formája a Fourier-sorok alkalmazása. A közelítő megoldásoknak a számítástechnikai alkalmazásokban van igen jelentős hasznuk, ugyanis az ilyen jellegű eredményeket a kézzel történő számításoknál nagyságrendekkel gyorsabban kaphatjuk meg, és azokból a tényleges megoldás jellemzően kikövetkeztethető, ha egyáltalán szükségünk van ilyenre. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1246780 (xsd:integer)
dbo:wikiPageLength
  • 53779 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23904412 (xsd:integer)
prop-hu:date
  • 20190918204212 (xsd:decimal)
prop-hu:url
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Közelítő módszerek (hu)
  • Közelítő módszerek (hu)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of