dbo:abstract
|
- A középpontos háromszögszámok a figurális számokon belül a középpontos sokszögszámokhoz tartoznak; olyan alakzatokat jellemeznek, ahol a középpontban egy pont van, és azt háromszög alakú pontrétegek veszik körül. Az alábbi ábra szemlélteti a középpontos háromszögszámok generálását. Minden lépésben a piros pontok mutatják a már meglévő pontokat, az új pontok pedig kékek: Az n. középpontos háromszögszám képlete a következő: Az első néhány középpontos háromszögszám a következő: 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, … (A005448 sorozat az OEIS-ben) Minden ilyen szám hárommal osztva egyet ad maradékul, 10 felett pedig mindig három egymást követő háromszögszám összege. (hu)
- A középpontos háromszögszámok a figurális számokon belül a középpontos sokszögszámokhoz tartoznak; olyan alakzatokat jellemeznek, ahol a középpontban egy pont van, és azt háromszög alakú pontrétegek veszik körül. Az alábbi ábra szemlélteti a középpontos háromszögszámok generálását. Minden lépésben a piros pontok mutatják a már meglévő pontokat, az új pontok pedig kékek: Az n. középpontos háromszögszám képlete a következő: Az első néhány középpontos háromszögszám a következő: 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, … (A005448 sorozat az OEIS-ben) Minden ilyen szám hárommal osztva egyet ad maradékul, 10 felett pedig mindig három egymást követő háromszögszám összege. (hu)
|