Property Value
dbo:abstract
  • A statisztika eszköztárában a lineáris regresszió egy olyan paraméteres regressziós modell, mely feltételezi a magyarázó- (X) és a magyarázott (y) változó közti (paramétereiben) lineáris kapcsolatot. Ez azt jelenti, hogy lineáris regresszió becslése során a mintavételi adatok pontfelhőjére igyekszünk egyenest illeszteni. A lineáris kapcsolat a következőképpen fejezhető ki: ahol , vektorok, mátrix, vektor minden -ra, a magyarázóváltozók száma (konstanssal együtt), a mintanagyság. A lineáris regresszió becslése során a paramétervektort becsüljük a rendelkezésre álló mintából úgy, hogy az pl. az átlagos négyzetes hibát minimalizálja. A legegyszerűbb, és legáltalánosabb becslési módszer a legkisebb négyzetek módszere, azonban ez utóbbi nem tévesztendő össze a lineáris regresszió fogalmával, mivel lineáris regressziós egyenest más becslési módszerekkel is becsülhetjük, és a legkisebb négyzetek módszere nem csak lineáris regressziós modellek becslésére alkalmas. A lineáris regressziós elemzést és becslést mindig elvégezhetjük, azonban az eredmények értelmezése a valós populációs összefüggésekre tett különböző feltételezések megtételéhez kötött. A becsült lineáris regressziós egyenes többféleképpen értelmezhető: * Értelmezhető deskriptív módon úgy, hogy ez az a lineáris függvény, ami a legjobban illeszkedik az adott ponthalmazra. Amennyiben az egyenest valóban illeszteni tudjuk, erre az értelmezésre mindig lehetőségünk van egyéb feltételezésektől függetlenül. * Az előző ponthoz kapcsolódóan lehetőségünk van arra, hogy megbecsüljük, vagy előrejelezzük a magyarázott változó olyan értékét, amelyhez a mintában nem tartozik magyarázó változó érték. Ebben az esetben a lineáris regressziós egyenes adja a magyarázott változó legjobb lineáris közelítését a magyarázó változó adott értéke mellett. * Értelmezhetjük úgy, hogy a regressziós egyenes egy átfogó képet ad arról, hogy y várhatóan hogyan változik X változásának hatására. Ez esetben a következőt mondhatjuk a lineáris regressziós becslés és a feltételes átlagfüggvény kapcsolatáról: * Amennyiben a feltételes átlagfüggvény, lineáris β-ban, akkor a becsült lineáris regressziós függvény egybeesik azzal, tehát az eredmények várható érték alapú értelmezése korrekt. * Amennyiben a feltételes átlagfüggvény nemlineáris, a becsült lineáris regressziós függvény a legjobb lineáris közelítése annak. Ez esetben ugyan a várható érték alapú értelmezés nem teljes mértékben korrekt, mégis hasznos, értelmezhető információval szolgálhatunk a becslés eredményeit vizsgálva és körültekintően értelmezve. A magyarázóváltozók száma alapján megkülönböztetünk egyszerű vagy többszörös lineáris regressziót, az adatok X mátrixa pedig lehet véletlen vagy rögzített. (hu)
  • A statisztika eszköztárában a lineáris regresszió egy olyan paraméteres regressziós modell, mely feltételezi a magyarázó- (X) és a magyarázott (y) változó közti (paramétereiben) lineáris kapcsolatot. Ez azt jelenti, hogy lineáris regresszió becslése során a mintavételi adatok pontfelhőjére igyekszünk egyenest illeszteni. A lineáris kapcsolat a következőképpen fejezhető ki: ahol , vektorok, mátrix, vektor minden -ra, a magyarázóváltozók száma (konstanssal együtt), a mintanagyság. A lineáris regresszió becslése során a paramétervektort becsüljük a rendelkezésre álló mintából úgy, hogy az pl. az átlagos négyzetes hibát minimalizálja. A legegyszerűbb, és legáltalánosabb becslési módszer a legkisebb négyzetek módszere, azonban ez utóbbi nem tévesztendő össze a lineáris regresszió fogalmával, mivel lineáris regressziós egyenest más becslési módszerekkel is becsülhetjük, és a legkisebb négyzetek módszere nem csak lineáris regressziós modellek becslésére alkalmas. A lineáris regressziós elemzést és becslést mindig elvégezhetjük, azonban az eredmények értelmezése a valós populációs összefüggésekre tett különböző feltételezések megtételéhez kötött. A becsült lineáris regressziós egyenes többféleképpen értelmezhető: * Értelmezhető deskriptív módon úgy, hogy ez az a lineáris függvény, ami a legjobban illeszkedik az adott ponthalmazra. Amennyiben az egyenest valóban illeszteni tudjuk, erre az értelmezésre mindig lehetőségünk van egyéb feltételezésektől függetlenül. * Az előző ponthoz kapcsolódóan lehetőségünk van arra, hogy megbecsüljük, vagy előrejelezzük a magyarázott változó olyan értékét, amelyhez a mintában nem tartozik magyarázó változó érték. Ebben az esetben a lineáris regressziós egyenes adja a magyarázott változó legjobb lineáris közelítését a magyarázó változó adott értéke mellett. * Értelmezhetjük úgy, hogy a regressziós egyenes egy átfogó képet ad arról, hogy y várhatóan hogyan változik X változásának hatására. Ez esetben a következőt mondhatjuk a lineáris regressziós becslés és a feltételes átlagfüggvény kapcsolatáról: * Amennyiben a feltételes átlagfüggvény, lineáris β-ban, akkor a becsült lineáris regressziós függvény egybeesik azzal, tehát az eredmények várható érték alapú értelmezése korrekt. * Amennyiben a feltételes átlagfüggvény nemlineáris, a becsült lineáris regressziós függvény a legjobb lineáris közelítése annak. Ez esetben ugyan a várható érték alapú értelmezés nem teljes mértékben korrekt, mégis hasznos, értelmezhető információval szolgálhatunk a becslés eredményeit vizsgálva és körültekintően értelmezve. A magyarázóváltozók száma alapján megkülönböztetünk egyszerű vagy többszörös lineáris regressziót, az adatok X mátrixa pedig lehet véletlen vagy rögzített. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 284763 (xsd:integer)
dbo:wikiPageLength
  • 25874 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23570128 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Lineáris regresszió (hu)
  • Lineáris regresszió (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of