dbo:abstract
|
- A matematikában a Markov-lánc egy olyan diszkrét sztochasztikus folyamatot jelent, amely Markov-tulajdonságú. Nevét egy orosz matematikusról, Andrej Markovról kapta, aki hírnevét a tudomány ezen ágában végzett kutatásaival szerezte. Markov-tulajdonságúnak lenni röviden annyit jelent, hogy adott jelenbeli állapot mellett, a rendszer jövőbeni állapota nem függ a múltbeliektől. Másképpen megfogalmazva ez azt is jelenti, hogy a jelen leírása teljesen magába foglalja az összes olyan információt, ami befolyásolhatja a folyamat jövőbeli helyzetét. Vegyünk például egy olyan fizikai rendszert, amelynek lehetséges állapotai . Az S rendszer az idő múlásával állapotait véletlenszerűen változtatja; vizsgáljuk a rendszer állapotait a diszkrét időpontokban, és legyen egyenlő k-val, ha S az n időpontban az állapotban van. Ezzel a terminológiával a Markov-tulajdonság így is megfogalmazható: A rendszer korábbi állapotai a későbbi állapotokra csak a jelen állapoton keresztül gyakorolhatnak befolyást. Adott jelen mellett tehát a jövő feltételesen független a múlttól. Semmi, ami a múltban történt, nem hat, nem ad előrejelzést a jövőre nézve, a jövőben minden lehetséges. Alapvető példa erre az érmedobás – ha fejet dobunk elsőre, másodikra ugyanúgy 50/50%-kal dobhatunk írást vagy fejet egyaránt. Ha pedig 100-szor dobunk fejet egymás után, akkor is ugyanannyi a valószínűsége, hogy fejet kapunk 101.-re, mint annak, hogy írást, az előzőekhez hasonlóan-a múlt tehát nem jelzi előre a jövőbeli eredményt. A jelen állapot az, hogy van egy érménk (nem cinkelt), fejjel és írással a két oldalán. Szabályos kereteket feltételezve semmi más nem befolyásolhatja a jövőbeni dobás alakulását. Minden egyes pillanatban a rendszer az adott valószínűségi változó eloszlása alapján vagy megváltoztatja az állapotát a jelenbeli állapotától, vagy ugyanúgy marad. Az állapotváltozásokat átmenetnek nevezzük, és azokat a valószínűségeket, melyek a különböző állapotváltozásokra vonatkoznak, átmenet-valószínűségeknek nevezzük. Ez a fogalom megtalálható a véletlen analízisben is. (hu)
- A matematikában a Markov-lánc egy olyan diszkrét sztochasztikus folyamatot jelent, amely Markov-tulajdonságú. Nevét egy orosz matematikusról, Andrej Markovról kapta, aki hírnevét a tudomány ezen ágában végzett kutatásaival szerezte. Markov-tulajdonságúnak lenni röviden annyit jelent, hogy adott jelenbeli állapot mellett, a rendszer jövőbeni állapota nem függ a múltbeliektől. Másképpen megfogalmazva ez azt is jelenti, hogy a jelen leírása teljesen magába foglalja az összes olyan információt, ami befolyásolhatja a folyamat jövőbeli helyzetét. Vegyünk például egy olyan fizikai rendszert, amelynek lehetséges állapotai . Az S rendszer az idő múlásával állapotait véletlenszerűen változtatja; vizsgáljuk a rendszer állapotait a diszkrét időpontokban, és legyen egyenlő k-val, ha S az n időpontban az állapotban van. Ezzel a terminológiával a Markov-tulajdonság így is megfogalmazható: A rendszer korábbi állapotai a későbbi állapotokra csak a jelen állapoton keresztül gyakorolhatnak befolyást. Adott jelen mellett tehát a jövő feltételesen független a múlttól. Semmi, ami a múltban történt, nem hat, nem ad előrejelzést a jövőre nézve, a jövőben minden lehetséges. Alapvető példa erre az érmedobás – ha fejet dobunk elsőre, másodikra ugyanúgy 50/50%-kal dobhatunk írást vagy fejet egyaránt. Ha pedig 100-szor dobunk fejet egymás után, akkor is ugyanannyi a valószínűsége, hogy fejet kapunk 101.-re, mint annak, hogy írást, az előzőekhez hasonlóan-a múlt tehát nem jelzi előre a jövőbeli eredményt. A jelen állapot az, hogy van egy érménk (nem cinkelt), fejjel és írással a két oldalán. Szabályos kereteket feltételezve semmi más nem befolyásolhatja a jövőbeni dobás alakulását. Minden egyes pillanatban a rendszer az adott valószínűségi változó eloszlása alapján vagy megváltoztatja az állapotát a jelenbeli állapotától, vagy ugyanúgy marad. Az állapotváltozásokat átmenetnek nevezzük, és azokat a valószínűségeket, melyek a különböző állapotváltozásokra vonatkoznak, átmenet-valószínűségeknek nevezzük. Ez a fogalom megtalálható a véletlen analízisben is. (hu)
|