dbo:abstract
|
- A komplex analízisben egy holomorf függvény megszüntethető szingularitása egy pont, ahol a függvény nincs definiálva, de ki lehetne terjeszteni a függvényt úgy, hogy értelmezve legyen ebben a pontban, és reguláris maradjon. Például a (nem normalizált) sinc függvénynek: megszüntethető szingularitása van nullában, a megfelelő érték sinc(0) := 1. Ez a sinc függvény határértéke, ha változója, z tart a nullához. A kibővített függvény holomorf. A probléma abból fakadt, hogy a függvényt határozatlan formában adták meg. A hatványsora: Formálisan, ha nyílt részhalmaza a komplex síknak, komplex szám -ban, és holomorf, akkor megszüntethető szingularitása, hogyha van egy függvény, ami megegyezik -fel ott, ahol az definiálva van. Azt mondjuk, hogy holomorf módon kiterjeszthető -ra, ha létezik ilyen függvény. (hu)
- A komplex analízisben egy holomorf függvény megszüntethető szingularitása egy pont, ahol a függvény nincs definiálva, de ki lehetne terjeszteni a függvényt úgy, hogy értelmezve legyen ebben a pontban, és reguláris maradjon. Például a (nem normalizált) sinc függvénynek: megszüntethető szingularitása van nullában, a megfelelő érték sinc(0) := 1. Ez a sinc függvény határértéke, ha változója, z tart a nullához. A kibővített függvény holomorf. A probléma abból fakadt, hogy a függvényt határozatlan formában adták meg. A hatványsora: Formálisan, ha nyílt részhalmaza a komplex síknak, komplex szám -ban, és holomorf, akkor megszüntethető szingularitása, hogyha van egy függvény, ami megegyezik -fel ott, ahol az definiálva van. Azt mondjuk, hogy holomorf módon kiterjeszthető -ra, ha létezik ilyen függvény. (hu)
|