Property Value
dbo:abstract
  • A modellelmélet a matematikai logika egyik legfontosabb ága a mellett. A modellelmélet terminológiája a halmazelmélet és az univerzális algebra általánosításán alapul. A formális nyelven megadott állításokat formuláknak nevezik, a formulák egy tetszőleges halmazát pedig (formális) elméleteknek. A formulák, illetve elméletek a megfelelő kontextusba helyezve kapnak jelentést; modellelméleti szempontból az ilyen kontextusok a . Tehát a struktúra mintegy „értelmet ad” a formuláknak. Fontos, hogy különbséget kell tennünk véges és végtelen modellelmélet között, mivel az egyik véges struktúrákra koncentrál, lényegesen eltér a problémák tanulmányozásában és az alkalmazott technikákban. Ezek a jelsorozatok a struktúrák bizonyos tulajdonságait írják le, nem magukat a struktúrákat. A modellelmélet lényegében a struktúrák, és formulák közti kapcsolatokat vizsgálja (a legtermészetesebb ilyen kapcsolat, hogy adott formula, formulahalmaz mely struktúrákban igaz); eközben az olyan klasszikus struktúrák tudományát általánosítja, mint például a csoportok vagy a gráfok. A modellelméletben nevezzük az olyan formális elméleteket (nyelveket), melyekhez található a nyelv axiómáit teljesítő struktúra. Ha az L elsőrendű nyelv és az A struktúra típusa megegyezik, akkor röviden azt mondjuk, hogy A egy L-struktúra. A magyarországi modellelméleti kutatások fontos előzmények után Makkai Mihály, későbbiekben pedig Sági Gábor munkássága és világra szóló eredményei révén teljesedtek ki. (hu)
  • A modellelmélet a matematikai logika egyik legfontosabb ága a mellett. A modellelmélet terminológiája a halmazelmélet és az univerzális algebra általánosításán alapul. A formális nyelven megadott állításokat formuláknak nevezik, a formulák egy tetszőleges halmazát pedig (formális) elméleteknek. A formulák, illetve elméletek a megfelelő kontextusba helyezve kapnak jelentést; modellelméleti szempontból az ilyen kontextusok a . Tehát a struktúra mintegy „értelmet ad” a formuláknak. Fontos, hogy különbséget kell tennünk véges és végtelen modellelmélet között, mivel az egyik véges struktúrákra koncentrál, lényegesen eltér a problémák tanulmányozásában és az alkalmazott technikákban. Ezek a jelsorozatok a struktúrák bizonyos tulajdonságait írják le, nem magukat a struktúrákat. A modellelmélet lényegében a struktúrák, és formulák közti kapcsolatokat vizsgálja (a legtermészetesebb ilyen kapcsolat, hogy adott formula, formulahalmaz mely struktúrákban igaz); eközben az olyan klasszikus struktúrák tudományát általánosítja, mint például a csoportok vagy a gráfok. A modellelméletben nevezzük az olyan formális elméleteket (nyelveket), melyekhez található a nyelv axiómáit teljesítő struktúra. Ha az L elsőrendű nyelv és az A struktúra típusa megegyezik, akkor röviden azt mondjuk, hogy A egy L-struktúra. A magyarországi modellelméleti kutatások fontos előzmények után Makkai Mihály, későbbiekben pedig Sági Gábor munkássága és világra szóló eredményei révén teljesedtek ki. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 697041 (xsd:integer)
dbo:wikiPageLength
  • 22284 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23190681 (xsd:integer)
dct:subject
rdfs:label
  • Modellelmélet (hu)
  • Modellelmélet (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of