dbo:abstract
|
- A numerikus analízisben a Newton-módszer (más néven a Newton–Raphson-módszer vagy a Newton–Fourier-módszer) az egyik legjobb módszer, amellyel valós függvények esetén megközelíthetjük a gyököket (zérushelyeket). A Newton-módszer gyakran nagyon gyorsan konvergál, de csak akkor, ha az iteráció a kívánt gyökhöz elég közelről indul. Ez a közelség és a konvergenciasebesség a függvénytől függ. A Newton-módszer minden figyelmeztetés nélkül nagyon könnyen félrevezethet egy tapasztalatlan használót, ha túl távolról próbálkozik indítani a módszert. A legjobb megoldás tehát az, hogy egy másik eljárással vizsgáljuk a konvergenciát, ami felismeri és lehetőleg kiküszöböli a lehetséges konvergenciahibákat. Nemcsak gyököt tudunk keresni ezen a módon, hanem vagy is találhatunk, feltéve, hogy a függvény differenciálható; ugyanis a függvénynek ott lehet szélsőértéke, ahol deriváltjának gyöke van. Az algoritmus az első a osztályában, de ezeket meghaladja a . (hu)
- A numerikus analízisben a Newton-módszer (más néven a Newton–Raphson-módszer vagy a Newton–Fourier-módszer) az egyik legjobb módszer, amellyel valós függvények esetén megközelíthetjük a gyököket (zérushelyeket). A Newton-módszer gyakran nagyon gyorsan konvergál, de csak akkor, ha az iteráció a kívánt gyökhöz elég közelről indul. Ez a közelség és a konvergenciasebesség a függvénytől függ. A Newton-módszer minden figyelmeztetés nélkül nagyon könnyen félrevezethet egy tapasztalatlan használót, ha túl távolról próbálkozik indítani a módszert. A legjobb megoldás tehát az, hogy egy másik eljárással vizsgáljuk a konvergenciát, ami felismeri és lehetőleg kiküszöböli a lehetséges konvergenciahibákat. Nemcsak gyököt tudunk keresni ezen a módon, hanem vagy is találhatunk, feltéve, hogy a függvény differenciálható; ugyanis a függvénynek ott lehet szélsőértéke, ahol deriváltjának gyöke van. Az algoritmus az első a osztályában, de ezeket meghaladja a . (hu)
|