Property Value
dbo:abstract
  • A matematikában egy G csoport N részcsoportjáról azt mondjuk, hogy normálosztója, vagy normális részcsoportja G-nek , ha lehet vele faktorizálni, azaz létezik a , tehát létezik olyan homomorfizmus, melynek a magja N. Ha egy csoportnak ismerjük a normálosztóit, akkor izomorfia erejéig meg tudjuk határozni a vele homomorf csoportokat. Jelben: . Minden csoportnak normálosztója önmaga és az egységcsoport, ezek az illető csoport triviális normálosztói. Azokat a csoportokat, amiknek nincs normálosztója a triviálisokon kívül, egyszerű csoportoknak hívjuk. A normálosztó a csoportelmélet egyik legalapvetőbb fogalma. Fontosságát Galois ismerte fel. Galois ahhoz, hogy megállapítsa, hogy egy egyenlet megoldható-e gyökjelekkel, az illető egyenlet Galois-csoportjának deriváltláncát vizsgálta, ami normálosztók leghosszabb olyan lánca, aminek a faktorai kommutatívak. Ugyanis a deriváltlánc következő elemét a kommutátor-részcsoportjával vett faktoraként kapjuk. Ha egy egyenlet Galois-csoportja egyszerű, akkor nem oldható meg gyökjelekkel. Így az általános ötödfokú egyenlet sem, aminek a Galois-csoportja az alternáló csoport. Normálosztókkal és faktorcsoportokkal a csoportok szerkezete egyszerű csoportok felhasználásával elemezhető.A 20. század matematikájának egyik csúcsteljesítménye a véges egyszerű csoportok klasszifikációja. (hu)
  • A matematikában egy G csoport N részcsoportjáról azt mondjuk, hogy normálosztója, vagy normális részcsoportja G-nek , ha lehet vele faktorizálni, azaz létezik a , tehát létezik olyan homomorfizmus, melynek a magja N. Ha egy csoportnak ismerjük a normálosztóit, akkor izomorfia erejéig meg tudjuk határozni a vele homomorf csoportokat. Jelben: . Minden csoportnak normálosztója önmaga és az egységcsoport, ezek az illető csoport triviális normálosztói. Azokat a csoportokat, amiknek nincs normálosztója a triviálisokon kívül, egyszerű csoportoknak hívjuk. A normálosztó a csoportelmélet egyik legalapvetőbb fogalma. Fontosságát Galois ismerte fel. Galois ahhoz, hogy megállapítsa, hogy egy egyenlet megoldható-e gyökjelekkel, az illető egyenlet Galois-csoportjának deriváltláncát vizsgálta, ami normálosztók leghosszabb olyan lánca, aminek a faktorai kommutatívak. Ugyanis a deriváltlánc következő elemét a kommutátor-részcsoportjával vett faktoraként kapjuk. Ha egy egyenlet Galois-csoportja egyszerű, akkor nem oldható meg gyökjelekkel. Így az általános ötödfokú egyenlet sem, aminek a Galois-csoportja az alternáló csoport. Normálosztókkal és faktorcsoportokkal a csoportok szerkezete egyszerű csoportok felhasználásával elemezhető.A 20. század matematikájának egyik csúcsteljesítménye a véges egyszerű csoportok klasszifikációja. (hu)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 847082 (xsd:integer)
dbo:wikiPageLength
  • 13692 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23049876 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Normálosztó (hu)
  • Normálosztó (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of