dbo:abstract
|
- Az 1960-as évek új matematikájának szaknyelvében jelent meg, a nyitott mondat egy olyan mondat, melyben a változók helyére az alaphalmazból elemeket helyettesítve a kifejezés kiértékelése igaz vagy hamis eredményt ad. Az elemi matematikaoktatásban nem terjedt el, továbbra is az egyenlet, egyenlőtlenség független változókkal stb. a használatos kifejezésmód, habár a matematikai logikában és az analitikus filozófiában abszolúte köznapinak számít a „nyitott mondat” (valójában inkább „nyílt mondat”) és „zárt mondat” megnevezés (valójában bizonyos reformok részeként e tudományágak hatására próbálták elterjeszteni az elemi matematikaoktatásban; ld. a és az szócikkeket). A matematikai tételek predikatív szempontból való osztályzása, ennek részeként a nyílt-zárt megkülönböztetés felfedezése és logikai alapparadigmává tétele végső soron Gottlob Frege műve, bár ő nem a „zárt” és „nyílt”, hanem a „határozott” és „határozatlan” (illetve, „kiegészítésre szoruló”, „kitöltetlen” stb.) kifejezéseket használta. A nyitott mondat kifejezést főleg általános iskolai (alsó tagozatos) matematika tankönyvek használják érthetőbb, világosabb hangzása miatt. Ott nem egyszer valóban szöveges mondatokat jelöl ez a megnevezés. Az összes számértéket, melyre a nyitott mondat igaz értéket ad, megoldásnak nevezzük. Ha az alaphalmaz minden értéke megoldás, akkor azonosságról beszélünk. Példák nyitott mondatra: 1.
* , egyetlen megoldása az egész számok halmazán a 10. 2.
* , a valós számok halmazán minden 1,5-nél nagyobb valós szám megoldás. 3.
* , a valós számpárok halmazán azok a párok adják a megoldást, melyek egymás additív inverzei. 4.
* , azonosság, mert az alaphalmaz minden értéke megoldás. 5.
* , nincs megoldása egyetlen számkörben sem. A 2. példa egyenlőtlenség, a többi pedig egyenlet. A nyitott mondathoz minden esetben (gyakran csak közvetett módon) tartozik egy alaphalmaz, ami kijelöli azt a számkört, amiben a megoldásokat keressük. Lehet alaphalmaz a valós számok halmaza, vagy akár kereshetjük a megoldásokat az egészek körében. A fenti 2. példában 1,5 megoldás, ha alaphalmaznak a valós számokat választjuk, de nem megoldás, ha ugyanezt az egészek körében keressük. Az utóbbi esetben csak az 1,5-nél nagyobb egész számok a megoldások, tehát: 2, 3, 4, és így tovább. Másrészről pedig az alaphalmaznak a komplex számokat választva ez a feladat értelmetlen (persze más esetben lehet értelmes). Természetesen az azonosság is csak az alaphalmaz értékeire szorítkozhat. Az alaphalmaz használható a nyitott mondat megoldásainak felírásánál, amihez logikai jeleket és kvantorokat is használhatunk. Például a fenti második példa megoldását a következő módon formalizálhatjuk: Minden x-re, akkor, és csak akkor ha . Itt a minden x-re fordulat közvetetten azt sugallja, hogy az alaphalmaz minden szóba jövő matematikai objektumot jelent, azaz a lehető legbővebb számhalmazt. A fentiek folyományaként előállnak olyan esetek is, amikor a változók egyáltalán nem számokat jelentenek, mint például a függvényegyenleteknél. Tekintsük a következő kifejezést: f*f = f, ami x minden értékére a következőt jelenti: . Amennyiben az alaphalmaznak az összes valós függvényt tekintjük, akkor f-re kapható megoldás olyan függvényeket jelent, amik értéke csak 0, vagy csak 1 lehet. Amennyiben az alaphalmaz a folytonos függvények halmaza, akkor két konstans függvény lehet megoldás, az azonosan 0 és az azonosan 1 függvény. (hu)
- Az 1960-as évek új matematikájának szaknyelvében jelent meg, a nyitott mondat egy olyan mondat, melyben a változók helyére az alaphalmazból elemeket helyettesítve a kifejezés kiértékelése igaz vagy hamis eredményt ad. Az elemi matematikaoktatásban nem terjedt el, továbbra is az egyenlet, egyenlőtlenség független változókkal stb. a használatos kifejezésmód, habár a matematikai logikában és az analitikus filozófiában abszolúte köznapinak számít a „nyitott mondat” (valójában inkább „nyílt mondat”) és „zárt mondat” megnevezés (valójában bizonyos reformok részeként e tudományágak hatására próbálták elterjeszteni az elemi matematikaoktatásban; ld. a és az szócikkeket). A matematikai tételek predikatív szempontból való osztályzása, ennek részeként a nyílt-zárt megkülönböztetés felfedezése és logikai alapparadigmává tétele végső soron Gottlob Frege műve, bár ő nem a „zárt” és „nyílt”, hanem a „határozott” és „határozatlan” (illetve, „kiegészítésre szoruló”, „kitöltetlen” stb.) kifejezéseket használta. A nyitott mondat kifejezést főleg általános iskolai (alsó tagozatos) matematika tankönyvek használják érthetőbb, világosabb hangzása miatt. Ott nem egyszer valóban szöveges mondatokat jelöl ez a megnevezés. Az összes számértéket, melyre a nyitott mondat igaz értéket ad, megoldásnak nevezzük. Ha az alaphalmaz minden értéke megoldás, akkor azonosságról beszélünk. Példák nyitott mondatra: 1.
* , egyetlen megoldása az egész számok halmazán a 10. 2.
* , a valós számok halmazán minden 1,5-nél nagyobb valós szám megoldás. 3.
* , a valós számpárok halmazán azok a párok adják a megoldást, melyek egymás additív inverzei. 4.
* , azonosság, mert az alaphalmaz minden értéke megoldás. 5.
* , nincs megoldása egyetlen számkörben sem. A 2. példa egyenlőtlenség, a többi pedig egyenlet. A nyitott mondathoz minden esetben (gyakran csak közvetett módon) tartozik egy alaphalmaz, ami kijelöli azt a számkört, amiben a megoldásokat keressük. Lehet alaphalmaz a valós számok halmaza, vagy akár kereshetjük a megoldásokat az egészek körében. A fenti 2. példában 1,5 megoldás, ha alaphalmaznak a valós számokat választjuk, de nem megoldás, ha ugyanezt az egészek körében keressük. Az utóbbi esetben csak az 1,5-nél nagyobb egész számok a megoldások, tehát: 2, 3, 4, és így tovább. Másrészről pedig az alaphalmaznak a komplex számokat választva ez a feladat értelmetlen (persze más esetben lehet értelmes). Természetesen az azonosság is csak az alaphalmaz értékeire szorítkozhat. Az alaphalmaz használható a nyitott mondat megoldásainak felírásánál, amihez logikai jeleket és kvantorokat is használhatunk. Például a fenti második példa megoldását a következő módon formalizálhatjuk: Minden x-re, akkor, és csak akkor ha . Itt a minden x-re fordulat közvetetten azt sugallja, hogy az alaphalmaz minden szóba jövő matematikai objektumot jelent, azaz a lehető legbővebb számhalmazt. A fentiek folyományaként előállnak olyan esetek is, amikor a változók egyáltalán nem számokat jelentenek, mint például a függvényegyenleteknél. Tekintsük a következő kifejezést: f*f = f, ami x minden értékére a következőt jelenti: . Amennyiben az alaphalmaznak az összes valós függvényt tekintjük, akkor f-re kapható megoldás olyan függvényeket jelent, amik értéke csak 0, vagy csak 1 lehet. Amennyiben az alaphalmaz a folytonos függvények halmaza, akkor két konstans függvény lehet megoldás, az azonosan 0 és az azonosan 1 függvény. (hu)
|