dbo:abstract
|
- A palindromszám vagy számpalindrom olyan számot (szűken értelmezve tízes számrendszerbeli természetes számot) jelent, amelynek számjegyeit fordított sorrendben írva az eredeti számot kapjuk vissza. Ilyen szimmetrikus szám például a 16461. Maga a palindrom (régiesebb elnevezéssel palindróma) kifejezés általános értelemben a szójátékoknak, azon belül is az anagrammáknak egy fajtáját jelöli. Ilyen szó például a rotor, amely szó visszafelé olvasva is ugyanaz. Az első néhány palindromszám (tízes számrendszerben): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, … A palindromszámok nagy figyelmet kapnak egyes matematikai feladványokban. Jellemzőek lehetnek például az olyan problémafelvetések, amelynek során olyan számok keresése a cél, amelyek egyrészt valamely jellegzetes, meghatározott tulajdonsággal bírnak és palindromok. Például:
* palindrom prímek sorozata: 2, 3, 5, 7, 11, 101, 131, 151, …
* palindrom négyzetszámok sorozata: 0, 1, 4, 9, 121, 484, 676, 10201, 12321, … Buckminster Fuller a című könyvében a palindromszámokat – Az Ezeregyéjszaka meséi című gyűjteményben szereplő mesemondó lány után – Seherezádé-számoknak nevezi. Könnyen belátható, hogy bármely palindromszám középső (páros számú számjegyből álló palindromszám esetén: középső kettő) számjegyének tetszőleges számú megismétlésével kapott szám szintén palindromszám. Például: 101, 1001, 10001, … Az egyjegyű számok és az azonos számjegyekből álló számok palindromok. Bármely egész alapú számrendszerben végtelen sok palindromszám van, mert az azonos számjegyekből álló számok minden számrendszerben végtelen sorozatot alkotnak. Ilyenek például a repunitok, amiknek minden jegye 1. Az első néhány repunit 1, 11, 111, … (hu)
- A palindromszám vagy számpalindrom olyan számot (szűken értelmezve tízes számrendszerbeli természetes számot) jelent, amelynek számjegyeit fordított sorrendben írva az eredeti számot kapjuk vissza. Ilyen szimmetrikus szám például a 16461. Maga a palindrom (régiesebb elnevezéssel palindróma) kifejezés általános értelemben a szójátékoknak, azon belül is az anagrammáknak egy fajtáját jelöli. Ilyen szó például a rotor, amely szó visszafelé olvasva is ugyanaz. Az első néhány palindromszám (tízes számrendszerben): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, … A palindromszámok nagy figyelmet kapnak egyes matematikai feladványokban. Jellemzőek lehetnek például az olyan problémafelvetések, amelynek során olyan számok keresése a cél, amelyek egyrészt valamely jellegzetes, meghatározott tulajdonsággal bírnak és palindromok. Például:
* palindrom prímek sorozata: 2, 3, 5, 7, 11, 101, 131, 151, …
* palindrom négyzetszámok sorozata: 0, 1, 4, 9, 121, 484, 676, 10201, 12321, … Buckminster Fuller a című könyvében a palindromszámokat – Az Ezeregyéjszaka meséi című gyűjteményben szereplő mesemondó lány után – Seherezádé-számoknak nevezi. Könnyen belátható, hogy bármely palindromszám középső (páros számú számjegyből álló palindromszám esetén: középső kettő) számjegyének tetszőleges számú megismétlésével kapott szám szintén palindromszám. Például: 101, 1001, 10001, … Az egyjegyű számok és az azonos számjegyekből álló számok palindromok. Bármely egész alapú számrendszerben végtelen sok palindromszám van, mert az azonos számjegyekből álló számok minden számrendszerben végtelen sorozatot alkotnak. Ilyenek például a repunitok, amiknek minden jegye 1. Az első néhány repunit 1, 11, 111, … (hu)
|