dbo:abstract
|
- A matematikai analízisben parciális deriváltnak nevezzük a többváltozós függvények olyan deriváltját, amikor a függvényt egy rögzített változójának függvényeként fogjuk fel, eszerint deriválunk, miközben a többi változójelet konstans értéknek tekintjük. A többváltozós függvények parciális deriváltja az egyváltozós differenciálás hasznos általánosítása, a Fréchet-deriválttal együtt. Ha nem csak a szokásos módon, az Rn térben és annak n kitüntetett iránya mentén kívánjuk értelmezni a parciális derivált fogalmát, akkor két módon általánosíthatjuk. Az egyik az , a másik a lokálisan kompakt terekben alkalmazható . (hu)
- A matematikai analízisben parciális deriváltnak nevezzük a többváltozós függvények olyan deriváltját, amikor a függvényt egy rögzített változójának függvényeként fogjuk fel, eszerint deriválunk, miközben a többi változójelet konstans értéknek tekintjük. A többváltozós függvények parciális deriváltja az egyváltozós differenciálás hasznos általánosítása, a Fréchet-deriválttal együtt. Ha nem csak a szokásos módon, az Rn térben és annak n kitüntetett iránya mentén kívánjuk értelmezni a parciális derivált fogalmát, akkor két módon általánosíthatjuk. Az egyik az , a másik a lokálisan kompakt terekben alkalmazható . (hu)
|