Property |
Value |
dbo:abstract
|
- A matematikában, differenciálegyenletek területén, a határérték probléma egy differenciálegyenlet egy sor korlátozással, amiket peremfeltételeknek nevezünk. A peremérték probléma megoldása a differenciálegyenlet azon megoldása, amely kielégíti a peremfeltételeket. A peremérték-problémák a fizika több ágában megjelennek, mint bármely más differenciálegyenlet. A fontos peremérték-problémák egyik tág osztálya a Sturm–Liouville problémák. Ahhoz, hogy egy peremérték-probléma hasznos legyen valamilyen alkalmazás során, ahhoz jól meg kell legyen határozva. Ez azt jelenti, hogy a bemeneti problémának csak egy megoldása van, ami folyamatosan függ a bemenettől. A parciális differenciálegyenletek terén végzet munkák bizonyítják, hogy a tudományos és mérnöki alkalmazásokból származó peremérték-problémák jól meg vannak határozva. A legelső tanulmányozott peremérték-probléma a Dirichlet-probléma, a harmonikus függvények (a megoldásai) megtalálása. (hu)
- A matematikában, differenciálegyenletek területén, a határérték probléma egy differenciálegyenlet egy sor korlátozással, amiket peremfeltételeknek nevezünk. A peremérték probléma megoldása a differenciálegyenlet azon megoldása, amely kielégíti a peremfeltételeket. A peremérték-problémák a fizika több ágában megjelennek, mint bármely más differenciálegyenlet. A fontos peremérték-problémák egyik tág osztálya a Sturm–Liouville problémák. Ahhoz, hogy egy peremérték-probléma hasznos legyen valamilyen alkalmazás során, ahhoz jól meg kell legyen határozva. Ez azt jelenti, hogy a bemeneti problémának csak egy megoldása van, ami folyamatosan függ a bemenettől. A parciális differenciálegyenletek terén végzet munkák bizonyítják, hogy a tudományos és mérnöki alkalmazásokból származó peremérték-problémák jól meg vannak határozva. A legelső tanulmányozott peremérték-probléma a Dirichlet-probléma, a harmonikus függvények (a megoldásai) megtalálása. (hu)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4326 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
prop-hu:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- A matematikában, differenciálegyenletek területén, a határérték probléma egy differenciálegyenlet egy sor korlátozással, amiket peremfeltételeknek nevezünk. A peremérték probléma megoldása a differenciálegyenlet azon megoldása, amely kielégíti a peremfeltételeket. A peremérték-problémák a fizika több ágában megjelennek, mint bármely más differenciálegyenlet. A fontos peremérték-problémák egyik tág osztálya a Sturm–Liouville problémák. A legelső tanulmányozott peremérték-probléma a Dirichlet-probléma, a harmonikus függvények (a megoldásai) megtalálása. (hu)
- A matematikában, differenciálegyenletek területén, a határérték probléma egy differenciálegyenlet egy sor korlátozással, amiket peremfeltételeknek nevezünk. A peremérték probléma megoldása a differenciálegyenlet azon megoldása, amely kielégíti a peremfeltételeket. A peremérték-problémák a fizika több ágában megjelennek, mint bármely más differenciálegyenlet. A fontos peremérték-problémák egyik tág osztálya a Sturm–Liouville problémák. A legelső tanulmányozott peremérték-probléma a Dirichlet-probléma, a harmonikus függvények (a megoldásai) megtalálása. (hu)
|
rdfs:label
|
- Peremérték-probléma (hu)
- Peremérték-probléma (hu)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |