Property Value
dbo:abstract
  • A matematikában a polárkoordináta-rendszer olyan kétdimenziós koordináta-rendszer, mely a sík minden pontját egy szög és egy távolság adattal látja el. Tulajdonképpen itt a sík egy beszélhetünk. A polárkoordináták a sík egy kitüntetett pontjától mért távolságból és egy, a ponton átmenő, vektorosan definiált egyenestől mért irányszögből állnak. Konkrétan a hozzárendelés, mely a sík derékszögű koordináta-rendszerben megadott (x,y) koordinátájú pontjait ellátja polárkoordinátákkal a következő kapcsolatban van a derékszögű koordinátákkal: ahol r a sík P(x,y) pontjának origótól mért távolsága (nemnegatív szám), φ pedig az x tengely és az OP szakasz irányított szögtávolsága (ez radiánban 0 és 2π közötti érték, fokban 0° és 360° közötti). A koordinátavonalakat ebben a rendszerben egyfelől azon pontok alkotják, melyek mentén a φ koordináta állandó, vagyis az origóból induló félegyenesek, másrészt azok, amelyek mentén r állandó, vagyis az origó középpontú körök. A polárkoordináta rendszert olyankor célszerű használni az elterjedtebb Descartes-féle derékszögű koordináta-rendszerrel szemben, ha a pontok helyének megadása egyszerűbb távolságokkal és szögekkel, mint két egymásra merőleges szakasz hosszával. Ilyen terület például a geodézia, ahol a derékszögű koordináta-rendszer az felel meg, amit mérőszalaggal és végeznek. A pontos szögmérő műszerek (teodolit) elterjedésével a poláris mérés került előtérbe, amely távolság- és szögmérési adatokból számít koordinátákat. (hu)
  • A matematikában a polárkoordináta-rendszer olyan kétdimenziós koordináta-rendszer, mely a sík minden pontját egy szög és egy távolság adattal látja el. Tulajdonképpen itt a sík egy beszélhetünk. A polárkoordináták a sík egy kitüntetett pontjától mért távolságból és egy, a ponton átmenő, vektorosan definiált egyenestől mért irányszögből állnak. Konkrétan a hozzárendelés, mely a sík derékszögű koordináta-rendszerben megadott (x,y) koordinátájú pontjait ellátja polárkoordinátákkal a következő kapcsolatban van a derékszögű koordinátákkal: ahol r a sík P(x,y) pontjának origótól mért távolsága (nemnegatív szám), φ pedig az x tengely és az OP szakasz irányított szögtávolsága (ez radiánban 0 és 2π közötti érték, fokban 0° és 360° közötti). A koordinátavonalakat ebben a rendszerben egyfelől azon pontok alkotják, melyek mentén a φ koordináta állandó, vagyis az origóból induló félegyenesek, másrészt azok, amelyek mentén r állandó, vagyis az origó középpontú körök. A polárkoordináta rendszert olyankor célszerű használni az elterjedtebb Descartes-féle derékszögű koordináta-rendszerrel szemben, ha a pontok helyének megadása egyszerűbb távolságokkal és szögekkel, mint két egymásra merőleges szakasz hosszával. Ilyen terület például a geodézia, ahol a derékszögű koordináta-rendszer az felel meg, amit mérőszalaggal és végeznek. A pontos szögmérő műszerek (teodolit) elterjedésével a poláris mérés került előtérbe, amely távolság- és szögmérési adatokból számít koordinátákat. (hu)
dbo:wikiPageID
  • 213317 (xsd:integer)
dbo:wikiPageLength
  • 18899 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 23471786 (xsd:integer)
prop-hu:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Polárkoordináta-rendszer (hu)
  • Polárkoordináta-rendszer (hu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of