Property |
Value |
dbo:abstract
|
- A matematika területén a spektrális gráfelmélet a gráfok tulajdonságainak vizsgálata azok mátrixai (szomszédsági vagy ) , sajátértékeinek, sajátvektorainak tükrében. A spektrális gráfelmélet szoros kapcsolatban áll a matematika más területeivel, Ãgy a differenciálgeometriával, , Markov-láncokkal is, de fontos gyakorlati alkalmazásai is vannak: -áramkörök gyártása, fehérjeláncok vagy ismeretségi hálózatok felderÃtése, . Egy irányÃtatlan gráf szomszédsági mátrixa szimmetrikus, ezért sajátértékei (a gráf spektrumát adó ) valós számok és léteznek sajátvektorai. Bár a szomszédsági mátrix függ a csúcsok cÃmkéitÅ‘l, spektruma gráfinvariáns. A spektrális gráfelmélet olyan gráfparaméterekkel is foglalkozik, melyeket a gráf valamely kapcsolódó mátrixa sajátértékeinek multiplicitása határoz meg, ilyen például a Colin de Verdière-szám. (hu)
- A matematika területén a spektrális gráfelmélet a gráfok tulajdonságainak vizsgálata azok mátrixai (szomszédsági vagy ) , sajátértékeinek, sajátvektorainak tükrében. A spektrális gráfelmélet szoros kapcsolatban áll a matematika más területeivel, Ãgy a differenciálgeometriával, , Markov-láncokkal is, de fontos gyakorlati alkalmazásai is vannak: -áramkörök gyártása, fehérjeláncok vagy ismeretségi hálózatok felderÃtése, . Egy irányÃtatlan gráf szomszédsági mátrixa szimmetrikus, ezért sajátértékei (a gráf spektrumát adó ) valós számok és léteznek sajátvektorai. Bár a szomszédsági mátrix függ a csúcsok cÃmkéitÅ‘l, spektruma gráfinvariáns. A spektrális gráfelmélet olyan gráfparaméterekkel is foglalkozik, melyeket a gráf valamely kapcsolódó mátrixa sajátértékeinek multiplicitása határoz meg, ilyen például a Colin de Verdière-szám. (hu)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9646 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
prop-hu:first
| |
prop-hu:last
| |
prop-hu:mr
| |
prop-hu:title
|
- Spectral Graph theory (hu)
- Spectral Graph theory (hu)
|
prop-hu:url
| |
prop-hu:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- A matematika területén a spektrális gráfelmélet a gráfok tulajdonságainak vizsgálata azok mátrixai (szomszédsági vagy ) , sajátértékeinek, sajátvektorainak tükrében. A spektrális gráfelmélet szoros kapcsolatban áll a matematika más területeivel, Ãgy a differenciálgeometriával, , Markov-láncokkal is, de fontos gyakorlati alkalmazásai is vannak: -áramkörök gyártása, fehérjeláncok vagy ismeretségi hálózatok felderÃtése, . Egy irányÃtatlan gráf szomszédsági mátrixa szimmetrikus, ezért sajátértékei (a gráf spektrumát adó ) valós számok és léteznek sajátvektorai. (hu)
- A matematika területén a spektrális gráfelmélet a gráfok tulajdonságainak vizsgálata azok mátrixai (szomszédsági vagy ) , sajátértékeinek, sajátvektorainak tükrében. A spektrális gráfelmélet szoros kapcsolatban áll a matematika más területeivel, Ãgy a differenciálgeometriával, , Markov-láncokkal is, de fontos gyakorlati alkalmazásai is vannak: -áramkörök gyártása, fehérjeláncok vagy ismeretségi hálózatok felderÃtése, . Egy irányÃtatlan gráf szomszédsági mátrixa szimmetrikus, ezért sajátértékei (a gráf spektrumát adó ) valós számok és léteznek sajátvektorai. (hu)
|
rdfs:label
|
- Spektrális gráfelmélet (hu)
- Spektrális gráfelmélet (hu)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |