dbo:abstract
|
- A matematikában a P(X1, X2, …, Xn) polinomot szimmetrikus polinomoknak nevezzük, ha annak változóit tetszőleges módon felcserélve ugyanazt a polinomot kapjuk. Jelölésekkel megfogalmazva, legyen P egy szimmetrikus polinom, σ pedig az 1, 2, ..., n indexek egy permutációja, akkor fennáll a P(Xσ(1), Xσ(2), …, Xσ(n)) = P(X1, X2, …, Xn). (ellen)példák:
* 2x5+2y5 egy kétváltozós szimmetrikus polinom
* x5-y5 egy kétváltozós nem-szimmetrikus polinom (hu)
- A matematikában a P(X1, X2, …, Xn) polinomot szimmetrikus polinomoknak nevezzük, ha annak változóit tetszőleges módon felcserélve ugyanazt a polinomot kapjuk. Jelölésekkel megfogalmazva, legyen P egy szimmetrikus polinom, σ pedig az 1, 2, ..., n indexek egy permutációja, akkor fennáll a P(Xσ(1), Xσ(2), …, Xσ(n)) = P(X1, X2, …, Xn). (ellen)példák:
* 2x5+2y5 egy kétváltozós szimmetrikus polinom
* x5-y5 egy kétváltozós nem-szimmetrikus polinom (hu)
|