dbo:abstract
|
- A számelméletben a szuperbővelkedő szám (superabundant number, SA) speciális tulajdonságú természetes szám. Az erősen bővelkedő számoknál szigorúbb feltételt megszabva, egy n természetes szám akkor szuperbővelkedő, ha minden m < n-re igaz, hogy , ahol σ az osztóösszeg-függvényt jelöli. Az első néhány szuperbővelkedő szám az 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... (A004394 sorozat az OEIS-ben).A szuperbővelkedő számokat és Erdős definiálta, akik nem voltak tudatában a Rámánudzsan 1915-ös, "Highly Composite Numbers" című értekezéséből kihagyott oldalaknak, ahol Rámánudzsan az erősen összetett számok általánosításaként lényegében a szuperbővelkedő számokat is definiálta. A kihagyott oldalak végül 1997-ben, a Ramanujan Journal 1 (1997), 119–153 oldalán jelentek meg. (hu)
- A számelméletben a szuperbővelkedő szám (superabundant number, SA) speciális tulajdonságú természetes szám. Az erősen bővelkedő számoknál szigorúbb feltételt megszabva, egy n természetes szám akkor szuperbővelkedő, ha minden m < n-re igaz, hogy , ahol σ az osztóösszeg-függvényt jelöli. Az első néhány szuperbővelkedő szám az 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... (A004394 sorozat az OEIS-ben).A szuperbővelkedő számokat és Erdős definiálta, akik nem voltak tudatában a Rámánudzsan 1915-ös, "Highly Composite Numbers" című értekezéséből kihagyott oldalaknak, ahol Rámánudzsan az erősen összetett számok általánosításaként lényegében a szuperbővelkedő számokat is definiálta. A kihagyott oldalak végül 1997-ben, a Ramanujan Journal 1 (1997), 119–153 oldalán jelentek meg. (hu)
|