dbo:abstract
|
- A súlyfüggvény, más néven impulzusválasz, egy jelátviteli rendszernek az impulzusfüggvényre adott válasza, az deriváltja. Rendszerjellemző, hálózatfüggvény. Ha a nulla időpillanat előtt nem nulla értékű, akkor a rendszer nem kauzális. Laplace transzformáltja az átviteli függvény. A matematikai leírásmód elfogadja, hogy a függvénynek a nulla időpont előtt is lehet értéke. Ezt mínusz nulla időpontnak nevezzük. Mínusz nulla a függvény határértéke, amikor az idő a negatív tartományból közelít a nullához, és azt minden határon túl megközelíti. Tekintettel arra, hogy a függvény az idő vonatkozásában szimmetrikus, értéke a plusz nulla időpontban azonos. Ugyanakkor egyetlen reális eszközről sem tételezhetjük fel, hogy „tudja”, mekkora a válaszfüggvény, mielőtt az az esemény bekövetkezett volna, amelyre választ ad. Ez a kauzalitás (az ok–okozati összefüggés) megsértésének esete volna. A szabályozáselmélet annyiban egyszerűsíti a problémát, hogy a függvénynek csupán a nullánál nagyobb időpontra vonatkozó értékeit vizsgálja. (hu)
- A súlyfüggvény, más néven impulzusválasz, egy jelátviteli rendszernek az impulzusfüggvényre adott válasza, az deriváltja. Rendszerjellemző, hálózatfüggvény. Ha a nulla időpillanat előtt nem nulla értékű, akkor a rendszer nem kauzális. Laplace transzformáltja az átviteli függvény. A matematikai leírásmód elfogadja, hogy a függvénynek a nulla időpont előtt is lehet értéke. Ezt mínusz nulla időpontnak nevezzük. Mínusz nulla a függvény határértéke, amikor az idő a negatív tartományból közelít a nullához, és azt minden határon túl megközelíti. Tekintettel arra, hogy a függvény az idő vonatkozásában szimmetrikus, értéke a plusz nulla időpontban azonos. Ugyanakkor egyetlen reális eszközről sem tételezhetjük fel, hogy „tudja”, mekkora a válaszfüggvény, mielőtt az az esemény bekövetkezett volna, amelyre választ ad. Ez a kauzalitás (az ok–okozati összefüggés) megsértésének esete volna. A szabályozáselmélet annyiban egyszerűsíti a problémát, hogy a függvénynek csupán a nullánál nagyobb időpontra vonatkozó értékeit vizsgálja. (hu)
|