dbo:abstract
|
- A számelméletben tökéletes számnak nevezzük azokat a természetes számokat, amelyek megegyeznek az önmaguknál kisebb osztóik összegével. Vagy, ami ezzel ekvivalens, hogy tökéletes szám minden olyan n egész, amelyre az osztóösszeg-függvény σ(n)=2n (azaz összes osztójának összege pont a szám 2-szerese), vagy a valódi osztók összege s(n)=n. A társas számok speciális esetei. A definíció az ókorból származik, már Eukleidész: Elemek c. művében is megjelenik (VII.22), τέλειος ἀριθμός (tökéletes, ideális vagy teljes szám) néven. Eukleidész meghatározott egy képzési szabályt is (IX.36), miszerint páros tökéletes szám, amennyiben alakú, és pedig prímek – az ilyen alakú számokat jelenleg Mersenne-prímeknek nevezzük. Jóval később Euler igazolta, hogy az összes páros tökéletes szám ebben az alakban írható fel. Ez az . Nem ismeretes, hogy létezik-e páratlan tökéletes szám, ahogy az sem, hogy létezik-e végtelen sok tökéletes szám. (hu)
- A számelméletben tökéletes számnak nevezzük azokat a természetes számokat, amelyek megegyeznek az önmaguknál kisebb osztóik összegével. Vagy, ami ezzel ekvivalens, hogy tökéletes szám minden olyan n egész, amelyre az osztóösszeg-függvény σ(n)=2n (azaz összes osztójának összege pont a szám 2-szerese), vagy a valódi osztók összege s(n)=n. A társas számok speciális esetei. A definíció az ókorból származik, már Eukleidész: Elemek c. művében is megjelenik (VII.22), τέλειος ἀριθμός (tökéletes, ideális vagy teljes szám) néven. Eukleidész meghatározott egy képzési szabályt is (IX.36), miszerint páros tökéletes szám, amennyiben alakú, és pedig prímek – az ilyen alakú számokat jelenleg Mersenne-prímeknek nevezzük. Jóval később Euler igazolta, hogy az összes páros tökéletes szám ebben az alakban írható fel. Ez az . Nem ismeretes, hogy létezik-e páratlan tökéletes szám, ahogy az sem, hogy létezik-e végtelen sok tökéletes szám. (hu)
|