dbo:abstract
|
- A valós számok halmaza és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. Ez a Birkhoff-féle "vonalzó"-axióma. A valós számok halmaza végtelen, hisz tartalmazza a szintén végtelen számú természetes, egész és tört számokat, tehát összességében a racionális számok halmazának és az irracionális számok halmazának unióját jelenti. Az irracionális számok definíciója szerint nincs olyan szám, amely egyszerre racionális és irracionális lenne, és a két halmaz elemein kívül más nem tartozik a valós számokhoz. (Vannak viszont számok, amelyek se racionális se irracionális számok, mert nem valós számok, a nagyságuk nem meghatározható a valós számegyenesen vett rendezéssel a 0-hoz képest, tehát nem 0, nem is pozitív és nem is negatív számok. Például a nem valós komplex számok.) A valós számokat a tizedestörtekkel azonosíthatjuk: a véges valamint a végtelen szakaszosan ismétlődő tizedestörtek a racionális számoknak, míg a végtelen, szakaszosan nem ismétlődő tizedestörtek az irracionális számoknak felelnek meg. A számhalmaz létrehozásában alapvető volt a görögök felfedezése, miszerint kettőnek a négyzetgyöke (a négyzetátló hosszának mérőszáma) nem racionális szám, bár pontos, matematikailag kielégítő definícióra a 19. századig kellett várni. A valós számok halmazának matematikai jele (a latin realis szóból, ami valósat, valóságosat jelent). Unicode-ja U+211D. A Birkhoff-féle "vonalzó"-axióma miatt a valós számok halmaza alkalmas folytonos problémák megoldására. Ugyan a racionális számok halmaza is összefüggő, de nem teljes, azaz vannak racionális számokból álló sorozatok, melyek határértéke irracionális. Folytonos problémák esetén a közelítő megoldások egy valóban létező megoldást közelítenek. Ezt az elvet sokoldalúan alkalmazzák az analízisben, a geometriában és a topológiában. A hosszakat, felszíneket, felületeket, térfogatokat szintén emiatt definiálják valós számokként, és nemcsak a kör meg a gömb miatt. A tapasztalati tudományokban is megmarad ez az elv. (hu)
- A valós számok halmaza és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. Ez a Birkhoff-féle "vonalzó"-axióma. A valós számok halmaza végtelen, hisz tartalmazza a szintén végtelen számú természetes, egész és tört számokat, tehát összességében a racionális számok halmazának és az irracionális számok halmazának unióját jelenti. Az irracionális számok definíciója szerint nincs olyan szám, amely egyszerre racionális és irracionális lenne, és a két halmaz elemein kívül más nem tartozik a valós számokhoz. (Vannak viszont számok, amelyek se racionális se irracionális számok, mert nem valós számok, a nagyságuk nem meghatározható a valós számegyenesen vett rendezéssel a 0-hoz képest, tehát nem 0, nem is pozitív és nem is negatív számok. Például a nem valós komplex számok.) A valós számokat a tizedestörtekkel azonosíthatjuk: a véges valamint a végtelen szakaszosan ismétlődő tizedestörtek a racionális számoknak, míg a végtelen, szakaszosan nem ismétlődő tizedestörtek az irracionális számoknak felelnek meg. A számhalmaz létrehozásában alapvető volt a görögök felfedezése, miszerint kettőnek a négyzetgyöke (a négyzetátló hosszának mérőszáma) nem racionális szám, bár pontos, matematikailag kielégítő definícióra a 19. századig kellett várni. A valós számok halmazának matematikai jele (a latin realis szóból, ami valósat, valóságosat jelent). Unicode-ja U+211D. A Birkhoff-féle "vonalzó"-axióma miatt a valós számok halmaza alkalmas folytonos problémák megoldására. Ugyan a racionális számok halmaza is összefüggő, de nem teljes, azaz vannak racionális számokból álló sorozatok, melyek határértéke irracionális. Folytonos problémák esetén a közelítő megoldások egy valóban létező megoldást közelítenek. Ezt az elvet sokoldalúan alkalmazzák az analízisben, a geometriában és a topológiában. A hosszakat, felszíneket, felületeket, térfogatokat szintén emiatt definiálják valós számokként, és nemcsak a kör meg a gömb miatt. A tapasztalati tudományokban is megmarad ez az elv. (hu)
|